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Abstract

Current methods for off-road navigation using vehicle
and terrain models to predict future vehicle response are
limited by the accuracy of the models they use and can suf-
fer if the world is unknown or if conditions change and the
models become inaccurate. In this paper, an adaptive ap-
proach is presented that closes the loop around the vehicle
predictions. This approach is applied to an autonomous
vehicle driving through unknown terrain with varied vege-
tation. Features are extracted from range points from for-
ward looking sensors. These features are used by a locally
weighted learning module to predict the load-bearing sur-
face, which is often hidden by vegetation. The true surface
is then found when the vehicle drives over that area, and
this feedback is used to improve the model. Results using
real data show improved predictions of the load-bearing
surface and successful adaptation to changing conditions.

1 Introduction and Related Work
Automated vehicles that can safely operate in rough ter-

rain hold the promise of higher productivity and efficiency
by reducing the need for skilled operators, increased safety
by removing people from dangerous environments, and an
improved ability to explore difficult domains on earth and
other planets. Even if a vehicle is not fully autonomous,
there are benefits from having a vehicle that can reason
about its environment to keep itself safe. Such systems can
be used in safeguarded teleoperation or as an additional
safety system for human operated vehicles.

To safely perform tasks in unstructured environments,
an automated vehicle must be able to recognize terrain in-
teractions that could cause damage to the vehicle. This
is a difficult problem because there are complex dynamic
interactions between the vehicle and the terrain that are of-
ten unknown and can change over time, vegetation is com-

pressible which prevents a purely geometric interpretation
of the world, there are catastrophic states such as rollover
that must be avoided, and there is uncertainty in everything.
In agricultural applications, much about the environment is
known, but unexpected changes can occur due to weather,
and the vehicle is often required to drive through vegetation
that changes during the year. In more general off-road ex-
ploration tasks, driving through vegetated areas may save
time or provide the only possible route to a goal destina-
tion, and the terrain is often unknown to the vehicle.

Many researchers have approached the rough terrain
navigation problem by creating terrain representations
from sensor information and then using a vehicle model
to make predictions of the future vehicle trajectory to de-
termine safe control actions [1, 2, 3, 4]. These techniques
have been successful on rolling terrain with discrete ob-
stacles and have shown promise in more cluttered environ-
ments, but handling vegetation remains a challenge.

Navigation in vegetation is difficult because the range
points from stereo cameras or a laser range-finder do not
generally give the load-bearing surface. Classification of
vegetation and solid substances can be useful for this task,
but it is not sufficient. A grassy area on a steep slope may
be dangerous to drive on whereas the same grass on a flat
area could be easily traversable. Researchers have mod-
eled the statistics of laser data in grass to find hard ob-
jects [5], assigned spring models to different terrain classes
to determine traversability using a simple dynamic analy-
sis [4], and kept track of the ratio of laser hits to laser pass-
throughs to determine the ground surface in vegetation [3].

The above methods all rely on various forms of vehicle
and terrain models. These models are difficult to construct,
hard to tune, and if the terrain is unknown or changing, the
models can become inaccurate and the predictions will be
wrong. Incorrect predictions may lead to poor decisions
and unsafe vehicle behavior. In this work, we investigate
model learning methods to mitigate this problem.



Other researchers have investigated the use of parameter
identification techniques with soil models to estimate soil
parameters on-line from sensor data [6, 7], but these meth-
ods only determine the terrain that the vehicle is currently
traversing. We are interested in taking this a step further
and closing the loop around the vehicle predictions them-
selves by learning a better mapping from forward looking
sensor data to future vehicle state. This allows the vehi-
cle to use its experience from interacting with the terrain to
adapt to changing conditions and improve its performance
autonomously.

Our vehicle test platform is described in section 2 and
our model-based approach to safeguarding in rough terrain
is given in section 3. Section 4 explains the general ap-
proach of learning vehicle predictions and then describes
how this is used to find the load-bearing surface in veg-
etation. Experimental results are given in section 5 and
conclusions and future work are given in section 6.

2 Vehicle Platform and Terrain Mapping
Our project team [8] has automated a John Deere 6410

tractor (see figure 1). This vehicle has a rich set of sen-
sors, including a differential GPS unit, a 3-axis fiber optic
vertical gyro, a doppler radar ground speed sensor, a steer-
ing angle encoder, four custom wheel encoders, a high-
resolution stereo pair of digital cameras, and two SICK
laser range-finders (ladar) mounted on custom actively
controlled scanning mounts. The first ladar on the roof
of the vehicle is mounted horizontally and is scanned to
cover the area in front of the tractor. The ladar on the front
bumper is mounted vertically and is actively scanned in
the direction the tractor is steering. We are currently ex-
perimenting with a near-infrared camera and a millimeter-
wave radar unit as well.

The approach described in this work builds maps using
range points from multiple lasers that are actively scanned
while the vehicle moves over rough terrain. The true
ground surface is then found when the tractor drives over
that area a number of seconds later. To make this pro-
cess work, it is important that the scanned ladars are pre-
cisely calibrated and registered with each other in the trac-
tor frame, the timing of all the various pieces of sensor
data is carefully synchronized, and the vehicle has a pre-
cise pose estimate. Our system has a 13 state extended
Kalman filter with bias compensation and outlier rejection
that integrates the vehicle sensors described above into an
accurate estimate of the pose of the vehicle at 75Hz. This
pose information is used to tightly register the data from
the ladars into high quality terrain maps.

The information from the forward looking sensors rep-
resents a massive amount of data in its raw form, so some
form of data reduction is needed. One simple approach is

Figure 1: Automated tractor test platform.

to create a grid in the world frame and then combine the
raw data into summary information such as average height
for each grid cell. This approach makes it easy to com-
bine range information from the two ladars on our vehicle
and to combine sensor information over time as the vehicle
drives. Figure 3 shows the type of terrain we tested on and
a grid representation of this area using the average height
of each cell.

3 Rough Terrain Navigation

The goal of our system is to follow a predefined path
through rough terrain while keeping the vehicle safe. Path
tracking is performed using a modified form of pure pur-
suit [8]. The decision to continue is based on safety thresh-
olds on the model predictions for roll, pitch, clearance, and
suspension limits. These quantities are found by building a
map of the upcoming terrain and using a vehicle model to
forward simulate the expected trajectory on that terrain [2].

If the vehicle is moving relatively slowly and the load-
bearing surface of the surrounding terrain can be measured,
these quantities can be computed using a simple kinematic
analysis. The trajectory of the vehicle is simulated forward
in time using its current velocity and steering angle. A
kinematic model of the vehicle is then placed on the ter-
rain map at regular intervals along the predicted trajectory,
and the heights of the four wheels are found in order to
make predictions of vehicle roll and pitch. The clearance
under the vehicle is important for finding body collisions
and high centering hazards. It is found by measuring the
distance from the height of the ground in each cell under
the vehicle to the plane of the bottom of the vehicle. Our
vehicle has a simple front rocker suspension, so checking
the suspension limits involves calculating the roll of the
front axle and comparing it to the roll of the rear axle. For
smooth terrain with solid obstacles, this approach works
well because accurate predictions of the load bearing sur-



face can be found by simply averaging the height of the
range points in the terrain map.

If there is vegetation, finding the load-bearing surface
can be difficult because many laser range points hit vari-
ous places on the vegetation instead of the ground. Sim-
ply averaging the points in a grid cell performs poorly in
this case. One possible solution is to use the lowest point
in each grid cell instead. This correctly ignores the range
points that hit vegetation, but because there is inevitable
noise in the range points (especially at long distances), this
results in the lowest outlier in the noise distribution being
chosen, thus underestimating the true ground height.

4 Learning Vehicle Predictions
To overcome the difficulties associated with creating ve-

hicle and terrain models for a complex environment that
may be unknown or changing, a learning method is pro-
posed. At the highest level, this approach is about closing
the loop around vehicle predictions, as shown in figure 2. A
vehicle prediction is a mapping from environmental sensor
information and current vehicle state to future vehicle mo-
tion. This mapping is learned by observing actual vehicle
motion after driving over a given terrain. During training
and execution, the vehicle makes predictions about the fu-
ture state of the vehicle by reasoning about its current state
and the terrain in front of the vehicle. Then, when the ve-
hicle drives over that terrain, it compares its predictions to
what actually happened. This feedback is used for contin-
ual learning and adaptation to the current conditions.

By closing the loop around vehicle predictions and im-
proving the system models on-line, tuning a system to a
given application is easier, the system can handle changing
or unknown terrain, and the system is able to improve its
performance over time.

The learning vehicle predictions approach has been ap-
plied to the problem of finding the load-bearing surface
in vegetation. The system makes predictions of the load-
bearing surface from features extracted from the laser
range points. Then it drives over the terrain and mea-
sures the true surface height with the rear wheels. These
input-output pairs are used as training examples to a locally
weighted learner that learns the mapping from terrain fea-
tures to load-bearing surface height. Once the load-bearing
surface is known, parameters of interest such as roll, pitch,
clearance, and suspension limits can easily be computed
using a kinematic vehicle model as described in section 3.

This combination of kinematic equations with machine
learning techniques offers several advantages. Known
kinematic relationships do not need to be learned, so the
learner can focus on the difficult unknown relationships.
Also, the learned function can be trained on flat safe areas,
but is valid on steep dangerous areas. If we learned the
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Figure 2: Learning vehicle predictions. Features from map cell
mi j extracted at time T are used to make a prediction. Then, at
time T + N the vehicle traverses the area and determines if its
prediction is correct. This feedback is used to improve the model.

roll and pitch directly, we would need to provide training
examples in dangerous areas to get valid predictions there.

4.1 Feature Extraction

As described in section 2, the range points from the
ladars are collected over time in a world frame grid. In
addition to maintaining the average and lowest height of
points in each cell, we use an approach similar to [3] to
take advantage of the added information about free space
that a laser ray provides. We maintain a scrolling map of
3D voxels around the vehicle that records the locations of
any hits in a voxel, as well as the number of laser rays
that pass through the voxel. Each voxel is 50cm square by
10cm tall. We use a cell size of 50cm because that is the
width of the rear tires on our tractor, which are used for
finding the true ground height.

Four different features are extracted from each column
of voxels in the terrain map. The average height of range
points works well for hard surfaces such as roads and
rocks. The lowest point may provide more information
about the ground height if there is sparse vegetation. Vox-
els that have a high ratio of hits to pass-throughs are likely
to represent solid objects, so the average of the points in
these voxels may help determine the load-bearing surface.
As shown in figure 4, the standard deviation from a plane
fit provides a good measure of how “smooth” an area is,
and works well as a discriminator between hard things like
road and compressible things like weeds. We are currently
working on other features that use color and texture infor-
mation in addition to laser range points.

4.2 Learning

By closing the loop around vehicle predictions, this ap-
proach produces a large amount of input-output pairs of
training data. The system extracts features from the sen-
sor data when making predictions and then records the true
value when it drives over that area. This happens continu-
ously, so the more the vehicle interacts with the environ-
ment, the more training data the learning system has to
work with.



Figure 3: Top: Test area showing dirt roads and vegetation.
Bottom: Map of test area using average height.

The mapping between the laser point features and the
true ground height is unknown and potentially complex,
so we use a general purpose function approximator for
this task. Among the many possibilities, locally weighted
learning [9] was chosen because it can accurately fit com-
plex functions, it produces confidence estimates on its pre-
dictions, and there are online versions available.

A common form of locally weighted learning is locally
weighted regression (LWR). Training with this algorithm
simply involves inserting input-output pairs into memory.
Then, when a new prediction is requested, the points in
memory are weighted by a kernel function of the distance
to the new query point, and a local multi-dimensional lin-
ear regression is performed on these weighted data points
to produce a prediction. For good results, the kernel width
must be chosen properly so that the resulting function does
not over-fit or over-smooth the data. We use global leave-
one-out cross validation to find the kernel width.

Standard statistical techniques for computing predic-
tion bounds have been adapted to be used with this algo-
rithm [10]. The size of the prediction bound depends both
on the density of data points in the area, and on the noise in
the outputs of nearby data points that cannot be explained
by the model. The prediction bounds assume that the lin-
ear model structure is correct and the noise is zero-mean
Gaussian. These assumptions can rarely be verified, but
because they only have to be satisfied locally, the predic-
tion bounds still give useful information in practice about
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Figure 4: The standard deviation from a plane fit is found for
each cell in the terrain map to discriminate between hard things
like road and compressible things like weeds.

the confidence in the prediction.
Locally weighted learning stores all of its training data,

so predictions take longer to compute as more training data
is collected. This is not practical for systems such as ours
that receive a continuous stream of data. Schaal [11] has
described an on-line incremental version of LWR called
receptive field weighted regression (RFWR). Instead of
postponing all computations until a new prediction is re-
quested, RFWR incrementally builds a set of receptive
fields, each of which has a local regression model that is
incrementally updated. The data points are then discarded,
and predictions are made from a combination of nearby re-
ceptive fields. A forgetting factor is used to slowly discount
old experience as it is replaced with new data.

5 Experimental Results

A set of experiments were performed to test the ca-
pabilities of this system. The first experiment shows the
improved performance of the learned predictions and the
usefulness of prediction bounds. The second experiment
shows the system’s ability to adapt to a change in the envi-
ronment.

Although the analysis for the following experiments
was performed off-line, the data used was collected in re-
alistic conditions at the test site shown in figure 3. We col-
lected approximately 25 minutes of data traveling on dirt
roads and driving through varied vegetation often over a
meter tall. Traveling at a speed of 1 m/s, we logged input-
output pairs of laser features and corresponding rear wheel
height at a rate of 4 examples per second, giving a total of
5700 data points. The data from the section shown in fig-
ure 3 was used as the test set, and the remaining 75% of
the data was used for training.
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Figure 5: Top: Height prediction deviations for right wheel
(should be zero). Average point has trouble in grass, lowest point
underestimates, learned predictions do better. Bottom: Learner
produces prediction bounds on its estimate that are lower for the
smooth road areas and high for some of the tall vegetation.

5.1 Performance Improvement

The locally weighted regression technique described in
section 4 was used to find a model for the training data
described above. Leave-one-out cross validation was used
to choose the kernel bandwidth. Figure 5 shows height
prediction results for a section of the test set. The top
graph shows the errors in predicted heights using the av-
erage height, the lowest point, and the learned result using
all the features described in section 4.1. It can be seen
that using the average point does quite poorly in vegetation
and using the lowest point can result in outlier points be-
ing chosen. This especially occurs on roads where many
laser points are recorded at long range (10m), resulting in
higher uncertainty. The learned result has smaller errors
than either of these because it is able to combine the differ-
ent features in an appropriate way. The lower graph shows
the 95% prediction intervals produced by LWR. The three
times that the vehicle drives on the road are clearly shown
by the tighter prediction bounds, and the learner has very
little confidence in its predictions for some of the points
in deep vegetation. These bounds are important because
they could be used to modify the behavior of the vehicle.
On simple terrain such as roads where the learner is con-
fident, the vehicle could drive faster or attempt more ex-
treme angles. In difficult terrain with tall vegetation where
the learner has low confidence, the vehicle could approach
the area with caution or avoid it completely.

Figure 6 shows that combining all the features using
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Figure 6: Comparison of the performance of the different features
along with global and local regression on the test set.
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Figure 7: Error of predictions on the test set at different distances
using LWR. The prediction bounds from the learner are similar to
the actual prediction errors.

global or local regression performs better than using any
of the features individually. LWR can represent the small
non-linearities in this problem and performs slightly better
than global linear regression. More importantly, LWR pro-
duces local prediction bounds that reflect the confidence
in the prediction at that particular location in the feature
space, allowing the system to be cautious in areas it hasn’t
experienced before.

The height predictions in figures 5 and 6 use all the laser
points that are collected for a given patch of terrain. In
practice, this would only happen if the system made pre-
dictions of future vehicle motion just in front of its current
location. This is not useful if the vehicle cannot react in this
distance. Figure 7 shows the effect of making predictions
further ahead of the vehicle. The plot shows that the spread
of the prediction errors increases when the predictions are
made farther into the future. The figure also shows the
mean 95% prediction bound the learner produces for dif-
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Figure 8: After learning a model for Site A using RFWR, the
system is transported to Site B. The error rises initially, but then
the system adapts to the new environment.

ferent prediction distances. This curve is similar to the 2σ
(95%) level on the error, again showing the usefulness of
the prediction bounds.

5.2 Adapting to Environmental Change

The above tests were performed in batch mode using
locally weighted linear regression. In this experiment, the
on-line receptive field weighted regression algorithm was
used to test the system’s ability to adapt to a changing en-
vironment. We collected more data in another test site that
had dense vegetation approximately 0.75m high. This data
was split into a training and test set. The training data was
presented to the RFWR learning algorithm, and the predic-
tion error on the test set was periodically computed.

Figure 8 shows the algorithm learning the characteris-
tics of this site and reducing prediction error on the test
set. Then, starting with sample 1000, the system was pre-
sented data used in the previous experiments. After being
trained in the first site with dense vegetation, the algorithm
did poorly in the new site with roads and more varied veg-
etation. However, the learner quickly adapted to the new
environment and ended up with a prediction error similar
to the batch mode version of LWR on the test set. This
experiment shows the importance of using an adaptive ap-
proach to be able to handle a changing environment.

6 Conclusions and Future Work

We have described the general approach of learning ve-
hicle predictions for local navigation, and we have applied
the technique to the problem of finding the load-bearing
surface in vegetation. The locally weighted learning so-
lution to this problem performed better than using a par-
ticular feature or performing global linear regression. An-

other benefit of this technique is that it produces predic-
tion bounds on its estimate, and these were shown to be
fairly accurate. Finally, the ability of the system to adapt
to changing environmental conditions was shown.

Future work in this area will include an investigation
into other features such as color and texture from camera
data, and the use of the prediction bounds for better vehicle
control. We will also investigate whether the technique of
learning vehicle predictions can be applied to other rough-
terrain navigation problems such as finding terrain friction
characteristics or dynamic vehicle response.
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