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Abstract— Current approaches to off-road autonomous navi-
gation are often limited by their ability to build a terrain model
from sensor data. Available sensors make very indirect measure-
ments of quantities of interest such as the supporting ground
height and the location of obstacles, especially in domains where
vegetation may hide the ground surface or partially obscure
obstacles. We introduce a generative, probabilistic terrain model
that exploits natural structure found in off-road environments
to constrain the problem and use ambiguous sensor data more
effectively. The model includes two Markov random fields that
encode the assumptions that ground heights smoothly vary and
terrain classes tend to cluster. The model also includes a latent
variable that encodes the assumption that vegetation of a single
type has a similar height. The model parameters can be trained
by simply driving through representative terrain. Results from a
number of challenging test scenarios in an agricultural domain
reveal that exploiting the 3D structure inherent in outdoor
domains significantly improves ground estimates and obstacle
detection accuracy, and allows the system to infer the supporting
ground surface even when it is hidden under dense vegetation.

I. I NTRODUCTION

Autonomous navigation in outdoor environments, such as
those encountered in agriculture, mining, and exploration
applications, is often performed using a model predictive
control framework [1]. In this framework, a terrain model
is used in combination with a model of the vehicle to find
a dynamic trajectory that avoids obstacles while protecting
against roll-over, body collisions, high-centering, and other
safety conditions. While faithful models of vehicle dynamics
are often available, acquiring an accurate terrain model that
includes a description of the supporting ground surface and
any obstacles remains a considerable challenge.

Outdoor, off-road environments do not possess structured
landmark features such as road markers, straight walls or
a flat ground plane. This “unstructured” nature of outdoor
environments complicates terrain model estimation and has
often been cited as one of the reasons why the development
of terrain models of these environments is considered to
be challenging [1] [2] [3]. However, such environments do
possess a great deal of structure that humans frequently exploit
in the performance of tasks we wish to automate. For example,
consider a vehicle navigating through a field of vegetation.
We can use the knowledge that ground is generally smooth
and that vegetation has approximately constant height (with

Fig. 1. Tractor test platform

respect to the ground) to permit stable and robust navigation,
even through areas where the ground is not directly observed.
The challenge lies in expressing this type of structure in a way
that can be made useful in autonomous navigation tasks.

In this paper, we describe a generative, probabilistic ap-
proach to modeling terrain. The model exploits the 3D spatial
structure inherent in outdoor domains and an array of noisy
but abundant sensor data to simultaneously estimate ground
height, vegetation height and classify obstacles. Joint inference
of ground height, class height and class identity over the whole
model results in more accurate estimation of each quantity. For
example, inferring the vegetation height permits an improved
estimate of the height of the underlying ground. Similarly,
knowing the ground height helps disambiguate solid obstacles
from the ground surface.

To help constrain the problem of joint obstacle detection
and supporting ground surface estimation, our terrain model
incorporates a number of spatial assumptions. Two of these
are encoded by distinct but interacting Markov random field
(MRF) models. Markov random fields specify the relation-
ship between variables through local dependencies. In our
terrain model, one MRF models ground height and enforces
our assumption that ground height is smoothly varying. The
second MRF encodes our assumption that regions associated
with a particular class tend to cluster (for example, patches
of vegetation of a single type tend to be found together). In
addition to the MRF layers, a simple latent variable model is
used to express an assumption that vegetation of the same type



has a similar height above the ground. These three components
interact through a hidden semi-Markov model (HSMM). The
hidden semi-Markov model generalizes the hidden Markov
model [4] by including an explicit probability distribution over
the duration of each state. In our model, the HSMM enforces
vertical structural assumptions such as the understanding that
vegetation grows on top of ground.

The spatial constraints embodied in the terrain model are
combined with information from multiple sensors on the vehi-
cle. The sensor models are automatically learned from training
data collected by driving over representative terrain. Training
these sensor models to directly detect obstacles is particularly
challenging because of the wide variety of objects that might
be considered obstacles. People, buildings, equipment, fences
and even holes are all obstacles we wish to avoid while
navigating in off-road environments. There may be little in
common between these things that we wish to classify as ob-
stacles, and it is impractical to train classifiers to individually
detect all possible types of obstacles. Instead, our approach is
to treat obstacles as having uncertain attributes relative to the
more accurate models of the known classes (such as vegetation
or ground). As a result, the model considers surprising and
otherwise unexplainable measurements as those most likely to
be associated with an obstacle. This is a common approach in
anomaly detection, and has been used for detecting obstacles
in an agricultural domain [5].

Our use of MRFs to encode horizontal spatial correlations
precludes an analytical solution to the inference problem.
However, by exploiting an organization of our data into
vertical HSMM columns, our approach allows us to model
3D structure in a reasonably efficient inference scheme. Gibbs
sampling over the MRF structures lets us perform exact
inference in the HSMM models using an efficient dynamic
programming algorithm. This substantially reduces compu-
tation time over a full 3D MRF model, and although our
approach is computationally demanding, the system can run
in real-time.

II. RELATED WORK

Early work in terrain perception considered domains where
the supporting ground surface is directly observable and
objects above the ground are generally obstacles [1] [2]. In
these domains, the range measurements can be used directly
to estimate the ground surface and find positive obstacles,
which enables successful navigation. As shown in Figure 2,
the presence of vegetation makes the problem much more
difficult because the range points from forward looking sensors
such as a laser range-finder or stereo cameras do not generally
give the supporting ground surface. Classification of vegetation
[6] (also common in the remote sensing community – see
references in [7]) is not sufficient for this task because a grassy
area on a steep slope may be dangerous to drive on whereas
the same grass on a flat area could be easily traversable. For
successful navigation in many off-road environments, a system
must be able to recover the supporting ground height and the
true obstacles, even in the presence of vegetation.

Fig. 2. Side view of penetrable vegetation data, with approximate ground
height. There are range points on the ground and the vegetation.

Fig. 3. Side view of data showing transition from low grass on the left to
tall dense non-penetrable vegetation on the right, with approximate ground
height. In the tall dense vegetation, there are only range points on the top of
the vegetation and the ground remains hidden.

A number of researchers have investigated methods that use
range data to discriminate sparse vegetation (as shown in Fig-
ure 2) from solid substances such as the ground or obstacles.
These techniques exploit the fact that range measurements
often penetrate sparse vegetation, but do not penetrate solid
obstacles. The properties used for discrimination fall into two
categories: shape and density.

Shape-based methods begin with a 3D cloud of range points
and look at local features of the data points to discriminate
between the random spread of points in sparse vegetation and
the organized structure of points on solid objects. Researchers
have modeled the statistics of laser penetration in grass to
find solid objects [8], and they have compared measurements
across time and space to filter out areas where the pene-
tration is continually changing [9]. A comparison between
techniques that look for the range shadow of solid obstacles
and techniques based on local point statistics is given in [7].
The strategy of computing local statistics about the spread of
points was expanded in [10] to discriminate between sparse
vegetation, solid surfaces, linear structures such as branches,
and even concertina wire [11].

Density-based methods attempt to use range measurements
to explicitly measure the density of objects in the environment.
This has been done by dividing the world into small volumes
of space and then maintaining density scores by keeping track
of lidar hits and pass-throughs [3], [12] or lidar and radar
measurements [13].

The above methods have shown promising results in sparse
vegetation, but they do not address the problem of estimating
the ground surface in dense vegetation where the ground is
completely hidden as in Figure 3. We have previously used
online learning methods to automatically learn the mapping
from features of the sensor data to ground height predic-
tions [14]. This system was able to predict the location of the
ground height under dense vegetation while still finding solid



obstacles. However, the system explicitly learns a vegetation
height so it is not general across vegetation of the same type
with unknown height, and the ground height estimates in dense
vegetation are very noisy and have large errors. One reason
for this is that this method makes the strong assumption of
independence between terrain patches and makes predictions
locally without incorporating spatial context. This can make
it difficult to disambiguate data from tall vegetation and data
from short vegetation, resulting in poor estimates of the hidden
ground height.

In this article we relax the independence assumption through
the inclusion of spatial correlations. This added structure
allows the model to infer the height of vegetation from the
local sensor data instead of training on it explicitly, and enables
the model to produce a smooth ground height estimate that is
well suited to autonomous navigation.

III. V EHICLE PLATFORM AND DATA REPRESENTATION

Our project team has automated a John Deere 6410 trac-
tor (see figure 1) and equipped it with many sensors for
localization and perception [14]. The vehicle has a high-
resolution stereo pair of digital cameras, an infrared camera,
and two SICK laser range-finders (lidar) mounted on custom
actively-controlled scanning mounts. The first scanning lidar
is mounted on the roof to get range data over a large area
in front of the vehicle, and the second scanning lidar is
mounted on the bumper to get high density measurements of
nearby terrain and better penetrate upcoming vegetation. The
cameras and scanned lidars are precisely calibrated and tightly
synchronized with an accurate global vehicle pose estimate,
allowing the system to accumulate data into a high quality
global map, as shown in Figure 4.

The basic representational structure of our terrain model is
thevoxel: a 15cm3 box-shaped region of 3 dimensional space.
We represent the vehicle’s local spatial environment as a voxel
lattice of size I x J x K, where theijkth voxel is in theijth
position of a horizontal 2D grid and thekth position above an
arbitrary subterranean origin.

Accurate global vehicle pose allows us to assign lidar
points corresponding to the same region of space to the
same voxel. Exploiting the precise synchronization of the
sensors, we project lidar points into the most recent color and
infrared images, so that each lidar point results in a vector
of appearance measurements for that voxel, including laser
remission (reflectance), infrared temperature, and color.1

The voxel representation also allows us to maintain a
density estimate throughout space by comparing how many
lidar rays pass through each voxel (pass-throughs) with the
number of lidar rays that hit something in that voxel (hits).
Density information is valuable when trying to separate sparse

1The lidar scans come in at a much higher rate than the image data so
multiple scans are projected into the same image. However, the high pixel
density of the images means that we collect approximately 100 pixels for
every lidar point. This coupled with the continual movement of the scanning
lidars makes it unlikely that a single pixel is used more than once, so we treat
each color and infrared tagged lidar point as an independent measurement.

Fig. 4. Colorized lidar points of farm test site buildings as the vehicle drove
down a path to the field

vegetation that contains a mixture of hits and pass-throughs
from solid objects that contain a majority of hits and only a
few pass-throughs due to sensor noise [3] [14].

Although our data representation is based on the voxel,
vehicle navigation is generally performed on a 2D surface,
so our ground height estimates and classification results are
made in terms of voxel columns. In our model, theijth
voxel column class is described with a multinomial dis-
tributed random variableCij taking on values related to the
possible contents of the column,Cij = c with e.g. c ∈
{ground , vegetation, obstacle}.

Associated with thekth voxel in the ijth voxel column
is the voxel stateXk

ij , a multinomial distributed random
variable that describes the nature of the material inside the
voxel, Xk

ij ∈ {ground , c, free-space}, wherec is the class of
the ijth voxel column.2 The ijkth voxel is also associated
with an observation vector formed by the concatenation of
multiple sensor measurement vectors from an array of sensor
modalities,Yk

ij = [Yden , Yrem , Yir , Ycol ]. The N lidar mea-
surements are encoded as a binary vectorYden consisting of
M ones representing hits andN−M zeros representing pass-
throughs. Associated with each of theM hit measurements
are corresponding measurements of laser remission, infrared
temperatures and color (i.e.Yden = [Y 1

den , . . . , Y N
den ], Yrem =

[Y 1
rem , . . . , Y M

rem ]).

IV. T ERRAIN MODEL

We use a probabilistic generative model to encode the
desired spatial correlation assumptions described in the intro-
duction. In this section we describe the model at three different
levels:

• Voxel observation models
• Vertical column structure
• Horizontal neighborhood structure

These levels build on each other from the inside out, going
from an individual voxel to a voxel column to the entire grid
of voxel columns. Figure 5 gives a graphical representation of
each of these three levels.

2In our implementation, the possibility of a voxel column simultaneously
containing obstacle and vegetation is excluded, though its inclusion is a trivial
extension of the model we present.
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(c) MRF model

Fig. 5. A graphical description of the model showing (a) the voxel, (b) the voxel column, and (c) the connections between voxel columns. For each voxel
columnij, the model contains voxel statesXk

ij , observationsY k
ij , and a classCij , class heightHc

ij , and ground heightHg
ij that interact with neighborsNij

and the common class heightHc

Before describing each level of the model in detail, we offer
a perspective on the entire model by exploring the process
of generating measurement data. The model contains two
Markov random fields. One MRF codifies our assumption that
the ground height varies smoothly with distance. Thus we
expect the ground height of voxel columnij to be similar
to the ground heights of the neighboring voxel columns.
From a generative perspective, conditioned on the values of
the neighboring ground heights we sample the ground height
of voxel column ij. Similarly, we assume that neighboring
voxel columns will tend to be members of the same class.
Once again, this assumption is represented as an MRF and
by conditioning on the class memberships of the neighboring
columns we can directly sample a class membership for
voxel column ij. To recover the ground heights and class
memberships of all the voxel columns this process is repeated
for all ij.

In addition to the ground height and class membership,
a vegetation class height (relative to ground height) must
also be determined for each voxel column with avegetation
class membership. We model the distribution of heights of a
particular vegetation class as a Gaussian centered about some
global mean height. For each vegetation class, a global class
mean height is sampled, and then conditioned on this mean
height, the individual class heights of the corresponding voxel
columns are sampled.

Once the ground height, class membership and vegetation
class heights are determined, their values are used to constrain
the properties of each voxel column which is described using

a hidden semi-Markov model. Each class has an associated
HSMM model that determines the state values for each voxel
in the vertical chain. For instance, below the sampled ground
height, all states assume the valueground. For the vegetation
classes, the states between the ground height and the veg-
etation height arevegetationand above that the voxels are
free-space.

Conditioned on the values of the voxel states, the material
properties, such as color, laser remission, infrared temperature
and density are all sampled independently from the appro-
priate state specific distribution (e.g.ground or vegetation).
Finally, conditioned on the values of each material property,
measurements are sampled independently from the various
measurement models.

While it is instructive to understand the model from a
generative perspective, in general we are more interested in the
opposite problem: how can one use the model toinfer ground
heights, class memberships and vegetation class heights from
real sensor data. This will be the subject of section V. We now
describe the three levels of the model in more detail.

A. Voxel Observation Models

We assume that voxels form the smallest indistinguishable
element of space, occupied completely by one (and only
one) voxel state. Each voxel state maintains a distribution
over material properties including density, remission, infrared
temperature, and color that describe the characteristics of that
state, but the material inside a single voxel is assumed to be
uniform. For example, the vegetation state may include a range



of colors, and therefore different voxels in vegetation may have
different colors, but we assume that the color of the vegetation
within each voxel is uniform.

There are a variable number of observations of the material
properties in each voxel, and care must be taken in how
we combine these measurements. Observations are commonly
modeled as being independent given the state, so that accumu-
lating measurements leads to an arbitrary certainty in the state
value. However, such an approach fails to take account of the
inherent uncertainty in the distribution of material properties
for a given voxel state value.

This phenomena is best illustrated with an example taken
from one of the experimental scenarios we use to validate
the model (see section IX-A). This example includes a white
shed next to a white road. If the system accumulates color
measurements for a particular voxel, then it can become
arbitrarily certain of the color of that voxel, but knowing
the true color material property of the voxel does not lead
to certainty regarding the voxel’s state value. Both the ground
and obstacle states can exhibit a range of colors, and gathering
evidence regarding the color of the voxel does not resolve the
uncertainty in material properties possessed by the states.

Statistically, this problem reduces to the fact that in our
model, multiple sensor measurements are not independent
conditional solely on the value of the state. For example,
a voxel may contain a vegetation state that includes both
green and yellow material properties. Observing green for that
voxel would then increase the probability of subsequent green
observations, even if one knows the true state of the voxel.
However, the measurementsare independent given the true
value of the measured material property. Continuing with the
example, knowing that the true color material property of a
voxel is green makes the color measurements of that voxel
independent. By explicitly introducing the true unobserved
material properties in to the observation model, we can prop-
erly account for the non-independence of sensor measurements
with respect to the state values.

The graphical model in Figure 5(a) illustrates the condi-
tional independencies between the voxel stateXk

ij , the material
property random variablesden, rem, ir and col , and the
measurements. Conditional onXk

ij , the material properties are
independent, and conditional on the material properties, the
measurements are independent. The voxel material properties
are not directly observed, and we are not concerned with
their values beyond what they reveal about the state. Thus
the material properties constitute nuisance variables that we
remove from the observation models through marginalization,
as described below.

1) Appearance:The distributions over the voxel appear-
ance properties, including infrared temperature, laser remis-
sion, and color are all inherently multi-modal and thus not well
described by a simple parametric distribution. For example,
remission values in vegetation are either high because of the
strong reflectivity of chlorophyll, or very low due to small
cross-sectional area. We resort to a Gaussian mixture model
(GMM) to describe the distribution of the material properties

within a state.
We develop the marginal distribution for the remission

values, but the infrared and color data are determined anal-
ogously. The true material propertyrem for state valuex
is modeled as a GMM withR mixture components. Each
individual mixture componenti is parameterized with mean
µi, varianceσ2

i , and mixing coefficientP (i). Note that these
parameters are unique to therem material property. Color and
infrared data are parameterized independently.

p(rem|Xk
ij =x) =

R∑
i=1

P (i)
1√
2πσ2

i

exp
(
− (rem − µi)2

2σ2
i

)
(1)

Conditional on the true material propertyrem, the mea-
surementsym

rem are assumed to be normally distributed,
ym
rem ∼ N (rem, σ2

y). We integrate out the nuisance variable
rem to get the marginal likelihood for all the remission data
yrem = [y1

rem , . . . , yM
rem ], resulting in a mixture of Gaussians

that is a function of the data mean̄yrem (see [15]).

p(yrem |Xk
ij = x) =

∫
p(yrem | rem)p(rem |Xk

ij = x) d(rem)

=
R∑

i=1

P (i)
∫ M∏

m=1

p(ym
rem | rem)p(rem | µi) d(rem)

=
R∑

i=1

P (i)
1√

2π
(
σ2

i + σ2
y

M

) exp

− (ȳrem − µi)2

2
(
σ2

i + σ2
y

M

)


(2)

As discussed above, although the measurements are in-
dependent given the material property:p(yrem | rem) =∏M

m=1 p(ym
rem | rem), equation 2 shows that the measure-

ments are not independent when conditioned on the state:
p(yrem | Xk

ij = x) 6=
∏M

m=1 p(ym
rem | Xk

ij = x). Measure-
ments are not independent sources of evidence with respect
to the value of the state and only influence state inference
indirectly through the latent material property.

Figure 6 further illustrates the effect of including the mate-
rial property explicitly in the observation model. Figure 6(a)
shows the GMM remission material property distribution (as
given in equation 1) associated with the ground, vegetation
and obstacle states. As the figure shows, the remission values
are a moderately informative feature of state, with lower
remission values tending to support a hypothesis of ground
over vegetation. With only one measurement (M = 1), the
remission observation model of equation 2 results in the
remission probability distribution shown in Figure 6(b). In
this case there are two significant sources of uncertainty:
the remission material property associated with each state (as
shown in Figure 6(a)) and the uncertainty associated with the
measurement itself (represented by the quantityσy). These
two sources of uncertainty combine to form the relatively high
variance distribution shown in Figure 6(b). With 40 measure-
ments, Figure 6(c) shows that the measurement uncertainty
is significantly reduced yet the uncertainty with respect to
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(c) 40 measurements

Fig. 6. The remission observation model (b) and (c) converges to the material property distribution (a) as the number of measurements increases

the possible remission values associated with each state (the
quantityrem in equations 1 and 2) remains. As more measure-
ments are incorporated, the appearance likelihoodp(yrem | x)
converges to the material property distributionp(rem | x).
This is also seen by inspection of equation 2. AsM → ∞
and asȳrem → rem (by the law of large numbers), equation
2 converges to equation 1.

2) Density: Voxel density values range from empty space
(den = 0) to completely solid (den = 1). Analogous to
the GMM models used for voxel appearance properties, the
distribution of density values for a given statex can be well
modeled using a beta distributionB(ax, bx) which operates
in the range[0, 1] and has parametersax andbx that together
specify its mean and variance.

Density is represented as the binary vectorY n
den (lidar hit or

pass-through), and we use a binomial distribution to describe
the number of hitsM =

∑N
n=1 Y n

den out of N total rays for a
given voxel density propertyden. As above, we integrate over
the nuisance parameterden, and we recover the beta-binomial
distribution as the marginal likelihood observation model.

P (M = m | Xk
ij = x)

=
∫

P (m | den)p(den | Xk
ij = x) d(den)

=
(

N

M

)
B(ax + M, bx + N −M)

B(ax, bx)

(3)

This model makes the assumption that a voxel with density
den generates lidar hits that follow a binomial distribution (the
outcome of repeated flips of a biased coin withP (heads) =
P (hit) = den). However, since a given statex has a range of
possible densities, which we model with a beta distribution,
the distribution over hitsM for a given statex becomes a
beta-binomial, which has greater variance than a binomial for
low amounts of dataN , but converges to a binomial asN
becomes large.

3) Free-space:The free-spacestate does not possess any
meaningful material properties beyond densityden. Lidar hits
occurring in free-spaceare generally the result of noise so
we model the non-density material properties as matching the
material properties of the states in contact withfree-space. For
example, the voxel above aground state voxel may contain
many pass-throughs with a single hit due to noise that has an
appearance that matches theground state. If we modeled the
appearance offree-spaceas uniform, then the strong match
in appearance data with theground state may overwhelm the

density information and prevent the voxel from correctly being
classified asfree-space. By setting the appearance properties
of free-spaceto match the state it is in contact with (ground
in this example), the transition tofree-spaceis decided solely
on density information.

4) Obstacles:Although we expect obstacles to generally
have a fairly high densityden, we cannot hope to build an
accurate observation model for the appearance of each of
the innumerable obstacles one might encounter in outdoor
environments, so we simply use a singleobstaclestate with a
corresponding uniform distribution over the observable range
of material appearance properties. We rely on accurately
modeling the features of the trained states to detect obstacles
as a default option when none of the other states are consistent.

B. Vertical Column Structure

As we move from lower to higher voxels within a column,
we expect to move fromground to vegetation, or perhaps
ground to obstacleand eventually tofree-space. We never
expect free-spaceto be found belowground, nor do we
expectvegetationto be suspended abovefree-space. This type
of structure is naturally imposed by introducing a Markov
dependency between voxel states that restricts vertical transi-
tions, thus defining a hidden Markov model within each voxel
column. However, the duration of states such asground and
vegetation are not well modeled by repeated self-transitions
in a Markov chain because this would induce a geometric
distribution on the duration of those states. We resort instead
to a hidden semi-Markov model (HSMM) [16] over voxel
states, which explicitly represents a state duration (or height
distribution) over voxels for each state value.

Figure 5(b) gives the intuition for a hidden semi-Markov
model. Unlike an HMM which transitions (possibly to the
same state) at every step, an HSMM remains in a single state
value for some random duration (e.g.Hc

ij in Figure 5(b)),
generating observations from that state at each step. At the
completion of the duration, the state transitions to a new value
according to the transition matrix and the process repeats. The
transitions between states remain Markov, but the individual
steps are not Markov since the probability of transitioning
depends on how long the system has been in that state.

As shown in Figure 5(b), we associate a single HSMM chain
structure with each column classCij , making the resulting
column model a mixture of HSMMs. The durations of the
ground and class states describe the height of those terrain
elements and are given byHg

ij andHc
ij .



The vertical structure helps constrain the location of vari-
ables of interest such as the ground height hidden beneath
dense vegetation. For example, in Figure 5(b), if we observe
measurements that makeX5

ij likely to be vegetationandX6
ij

likely to be free-space, then the HSMM chain for column
classCij = vegetation would be likely, and we would also
expect agroundto vegetationtransition somewhere belowX5

ij

because of our vertical transition structure. As described in the
next section, we can incorporate other information such as the
expected vegetation height and the location of surrounding
ground to further constrain the ground height even if it is
hidden below dense vegetation and has no direct observations.
This neighborhood information is incorporated into the column
HSMM models as a prior over the durationHg

ij of the ground
state and the durationHc

ij of the class state.

C. Horizontal Neighborhood Structure

In addition to the vertical structure captured by the HSMM
column models, there are also significant horizontal depen-
dencies between neighboring columns. The model encodes
assumptions of class continuity, the smoothness of ground, and
the similarity of vegetation height. This contextual information
helps constrain the problem, especially in areas where dense
vegetation hides the ground surface or in areas with missing
or ambiguous sensor data. We use Markov random fields to
encode our assumptions about class continuity and smooth
ground.

The Markov random field (MRF) [17] is an extension
of one-dimensional Markov chain models to two (or more)
dimensions. It is commonly used in spatial domains to model
structure such as smoothness, class continuity, or other prop-
erties correlating neighboring nodes. It has been successfully
applied to many applications including segmentation, noise
reduction, surface reconstruction, and texture classification
[18].

Our terrain model uses a standard two-dimensional MRF,
consisting of an undirected graph of nodes on a lattice structure
that connects the voxel columns horizontally and encapsulates
the conditional dependencies in the model. For example, the
connections in Figure 5(c) show the Markov property for the
ground height MRF:

P (Hg
ij | H

g
S) = P (Hg

ij | H
g
Nij

) (4)

whereHg
S is the set of all ground height nodes andHg

Nij
is the

set of neighbors of theijth voxel column ground heightHg
ij .

The set of neighborsHg
Nij

is also referred to as the Markov
blanket of the nodeHg

ij .
A key property of the MRF is that the joint probability

over the entire MRF is uniquely specified by the conditional
distributions that characterize its local Markov relationships
[18]. Therefore, from easily expressible local relationships
such as the notion that ground is smooth (with ground height
changing little between neighboring voxel columns), we are
able to infer global quantities such as the supporting ground
surface heights of every voxel column.

As shown in Figure 5(c), we model horizontal structure
using two distinct but interacting Markov random fields for
classCij and ground heightHg

ij , and a latent variable for the
common class heightHc across all columns. These variables
interact through the HSMM column models by imposing a
prior over the state durations associated withHc

ij and Hg
ij

and over the column class modelsCij .
The neighborhood dependency ofCij reflects the prior

assumption that class identities are positively correlated with
their neighbors so voxel columns tend to cluster in contiguous
groups of the same class. We express this preference using the
conditional MRF distribution

P (Cij = c | CNij
) ∝ exp

(
−λC

∑
{s,t}∈Nij

(c 6= cst)
)

(5)

whereNij is the set of neighboring indices andCNij
is the

set of classes in the neighborhood of theijth voxel column.
Ground height varies smoothly from one patch of ground

to the next, so we expect thatHg
ij will be tightly correlated

with nearby values. We express this belief using a Gaussian
Markov random field

P (Hg
ij = h | Hg

Nij
) ∝ exp

(
− 1

2σ2
G

(
h− 1

|Nij |
∑

{s,t}∈Nij

hg
st

)2)
(6)

where|Nij | is the size of the neighborhood (in our experiments
we used a 4-connected neighborhood).

We also expect that vegetation of the same classc has a
similar heightHc with some variation. This assumption may
not be valid for obstacles, so we only apply it to vegetation
classes. Given the common height of the vegetation in this
areaHc, we model the expected variation with a Gaussian
truncated by the interval of possible class heightsI[hc

min,hc
max]

P (Hc
ij = h | Hc) ∝ I[hc

min,hc
max] exp

(
− 1

2σ2
Hc

(h− hc)2
)
(7)

Because of the variation between different types of obstacles,
we treat the class height of obstacle columns as independent.

Other constraints can also be included in the model. For
example, we can fix the ground height under the wheels of
the vehicle since these ground heights are known. The smooth
ground prior in equation 6 then allows this information to
propagate through the model and helps constrain the surround-
ing area.

Our use of Markov random fields to encode spatial correla-
tions among variables is reminiscent of recent work in texture
segmentation, where an image is assumed to be composed
of a number of contiguous regions of uniform texture. One
approach uses one MRF layer to classify textures and a second
MRF layer that generates textures using separate parameters
for each class [19]. This “double Markov random field”
structure is related but distinct from our use of two MRFs
in the terrain model described above. Similar to the double
MRF, we maintain a single MRF for class segmentation that
interacts with another MRF representing the ground surface,
but rather than the parameters of one MRF depending on the



states of the other, we interpret columns of data based on both
the class MRF and the ground MRF.

Markov random fields have also been used in medical imag-
ing applications to segment various tissues from 3D volumetric
data [20]. Here material properties were represented in a voxel-
based representation similar to our terrain model. However, in
[20] the MRF was defined over the full 3D neighborhood of
the voxel, whereas we are able to exploit inherent structure in
our problem domain to keep the computationally demanding
MRF structures to 2D and handling our 3D data in terms of
voxel columns.

V. I NFERENCE

The interacting Markov random fields of this model capture
important structure, but these dependencies prevent analytic
determination of the posterior distributionP (C,Hg,Hc | Y ).
The set of HSMMs that describe the data in each column
of voxels can efficiently produce distributions over the state
durations, which makes it easy to sample from the conditional
distribution

P (Cij ,H
g
ij ,H

c
ij | Yij , CNij

,Hg
Nij

,Hc) (8)

so we use Gibbs sampling [17] to approximate inference.
Algorithm 1 describes the application of Gibbs sampling to

our model. The HSMM column models require a distribution
over class heights which comes from the common class height
latent variableHc, as shown in Figure 5(c). Samples of
the common class height are produced from its conditional
distribution given the current column class height sampleshc

ij

P (Hc=h |Hc
ij∈IJ) ∝ exp

( −1
2σ2

Hc/Dc

(
h− 1

Dc

∑
ij∈IJ,cij=c

hc
ij

)2)
(9)

whereDc is the number of columns with classc.
Once the common class heightsHc have been sampled,

each voxel column is sampled. The first step of the sampling
procedure is to find the priors over classCij , class height
Hc

ij and ground heightHg
ij from the neighbors, as given in

equations 5 and 6, and the common class heightsHc as given
in equation 7. The priors onHc

ij andHg
ij are then incorporated

into the HSMM model as priors over state durations and are
shown in the subsequent equations asP (Hc

ij = h | Hc) for
the class statex = c or P (Hg

ij = h | Hg
Nij

) for the ground
statex = g.

Once the prior distributions are found, the class HSMM
structures are used to find the probability of the data and the
state duration probabilities for each class. HSMMs use a vari-
ant of the standard forward-backward dynamic programming
solution used for inference in regular HMMs [16]. As shown
in figure 5(b), an HSMM maintains durations (corresponding
to height in our case) so that a single state is active over a
number of spatial steps up the chain. This formalism is very
natural for finding ground height or class height because the
neighborhood information can be included as a prior on the
corresponding state duration.

Algorithm 1 Gibbs sampling from the model

Sample common class heightshc from P (Hc | Hc
ij∈IJ)

using all the column class height samples of the same class
for all MRF voxel columnsij do

Find ground and class priors from neighbors:
P (Hg

ij | H
g
Nij

)
P (Cij | CNij )

for all Classesc do
Find class height prior from common class height of
same class:

P (Hc
ij | Hc)

Use class HSMM to find probability of the data and
distributions over the ground and class height:

P (Yij | Cij = c,Hg
Nij

,Hc)
P (Hg

ij | Cij = c, Yij ,H
g
Nij

,Hc)
P (Hc

ij | Cij = c, Yij ,H
g
Nij

,Hc)
end for
Compute class distribution:

P (Cij | Yij , CNij
Hg

Nij
Hc)

∝ P (Yij | Cij ,H
g
Nij

Hc)P (Cij | CNij
)

Samplecij from P (Cij | Yij , CNij
,Hg

Nij
,Hc)

Samplehg
ij from P (Hg

ij | Cij = cij , Yij ,H
g
Nij

,Hc)
Samplehc

ij from P (Hc
ij | Cij = cij , Yij ,H

g
Nij

,Hc)
end for

The forward-backward computations are still performed
over the individual spatial stepsXk

ij as in an HMM, but with
an HSMM one must solve for the duration of each state, so in
addition to summing over possible state transitionsx′, we also
sum over possible state durationsh. Equations 10 and 11 give
the HSMM forward and backward probabilitiesαk

ij,c andβk
ij,c

for spatial stepk of the classc chain in MRF voxel columnij.
We use the observation independencies and the deterministic
transitions of our chain structures to reduce the computational
complexity. We use the notationx− and x+ to refer to the
previous and next states in the chain of the current class.

αk
ij,c(x) = P (statex ends atk, Y 1:k

ij | Cij = c,Hg
Nij

,Hc)

=
∑
x′

∑
h

P (Xk
ij =x,Xk−h

ij =x′,Hx
ij =h, Y 1:k

ij |Cij ,H
g
Nij

,Hc)

=
∑

h

k∏
k′=k−h+1

P (Y k′

ij | x)P (Hx
ij = h | Hg

Nij
,Hc)αk−h

ij,c (x−)

(10)

βk
ij,c(x) = P (Y k+1:K

ij | statex ends atk,Cij = c,Hg
Nij

,Hc)

=
∑
x′

∑
h

P (Y k+1:K
ij |Xk

ij =x,Xk+h
ij =x′,Hx+

ij =h,Cij,H
g
Nij

,Hc)

=
∑

h

k+h∏
k′=k+1

P (Y k′

ij | x+)P (Hx+

ij = h | Hg
Nij

,Hc)βk+h
ij,c (x+)

(11)

Since we know by assumption that the chain must end in
the final statex = free-space, the probability of the data for



classc is the final value ofα in that state.

P (Yij | Cij = c,Hg
Nij

,Hc) = αK
ij,c(x = free-space) (12)

As described in Algorithm 1, this is combined with the class
prior P (Cij | CNij ) to find the distribution over classes, which
is used to sample a new class.

Finding the distribution over state durations involves com-
bining α and β. As above, equation 13 takes advantage of
the deterministic transitions of the chain structures to reduce
computation.

ζx
ij,c(h) = P (statex has durationh | Yij , Cij = c,Hg

Nij
,Hc)

=
∑

k

P (Xk
ij = x,Xk−h

ij = x− | Yij , Cij ,H
g
Nij

,Hc)

=
∑

k

k∏
k′=k−h+1

P (Y k′

ij |x)P (Hx
ij =h|Hg

Nij
,Hc)αk−h

ij,c (x−)βk
ij,c(x)

(13)

We know that in each chain, every state transition must occur
after some duration, so we can normalize by

∑
h ζx

ij,c(h) to
get the posterior on ground and class height conditional on the
neighbors. Samples are then drawn from these distributions.

P (Hg
ij = h | Cij = c, Yij ,H

g
Nij

,Hc) = ζx=ground
ij,c (h)

P (Hc
ij = h | Cij = c, Yij ,H

g
Nij

,Hc) = ζx=state c
ij,c (h)

(14)

The time complexity of HSMM calculations is greater
than an HMM because of the sum over possible durations,
but the observation likelihood products

∏
P (Y k′

ij |x) can be
pre-computed and the state durations to search over can be
constrained based on the priors to reduce the complexity to
O(numVoxels∗numStates∗maxDuration) for a single chain.

Although it is typically difficult to show that Gibbs sampling
has converged, we have found empirically that the model finds
a good estimate quickly, allowing for real-time execution.

VI. L EARNING

The model described in section IV incorporates prior knowl-
edge about the structure of the environment, but the specific
model parameters must be learned from training data. These
parameters include the sensor observation models for each
state and the neighborhood interactions for class, class height,
and ground height. The generative nature of our model allows
us to decouple the learning problems, and train each of these
observation and neighborhood interaction models individually,
thus greatly simplifying the learning task.

A. Observation Models

Collecting labeled training data is often expensive, es-
pecially in outdoor environments where there can be high
variation in sensor readings so that a large training set is
needed. We use an approach based on [14] to collect large
quantities of labeled training data to automatically train our
observation models. Specifically, we drive through represen-
tative terrain of a single class such asvegetationand store
the sensor measurements from the voxels of columns that we

drive over as training examples for that class. This process
is then repeated for other classes such asground. Unlike
[14] which directly trains on the height of different types of
vegetation, we only train on the various material properties
of vegetation voxels, allowing us to remain general across
vegetation heights.

Each labeled voxel collected by driving through represen-
tative terrain is used as a training example for the observation
models in equations 1, 2, and 3. For appearance data such
as remission, infrared and color, the mean values from each
voxel are used to train the GMM observation models (i.e. for
remission dataµi, σ2

i , P (i) in equation 1) and the variance
of measurements within the voxels is used as the GMM
measurement model variance (σ2

y in equation 2).
Hit and pass-through data from the labeled training voxels

are used to find the maximum likelihood parameters of the
beta-binomial density model (ax and bx in equation 3) for
each class statex using a Newton-Raphson method [21]. This
handles class states likegroundandvegetation, but the density
of obstacleandfree-spacestates must also be trained. Thefree-
spacedensity can be trained using data that includes insects
or dust that occasionally returns a lidar point, or it can just
be set manually to strongly favor empty space. Similarly, the
obstacledensity can be trained using hit and pass-through data
from representative obstacles, or it can be set manually to favor
dense objects.

B. Neighborhood Models

The priors given in equations 5 and 6 describe how class
and ground height depend on their neighbors, and the prior
in equation 7 describes how column class heights are related
to the common class height. Each of these priors contains
parameters that quantify the tendency for classes to clump
together, the smoothness of the ground, and the variability of
vegetation class heights. As above, we train these parameters
by driving over representative terrain.

As we drive over an area, we record the ground heights
measured by the location of our wheels. We use these height
sequences to find the standard deviationσG of typical ground
height variation between voxel columns, which gives us the
maximum likelihood estimate of our Gaussian MRF ground
neighborhood prior [22].

Similarly, as we drive through vegetation, we get an approx-
imate vegetation height measurement by taking the highest
lidar hit and subtracting the known ground height (from the
wheel locations). Since we assume that vegetation heights are
independent given the common vegetation height in the area,
we can find the class prior standard deviationσHc directly
from this sequence of class heights.

The class interaction priorλC gives the probability that
a class transitions to a different class. This could be es-
timated directly using pseudo-likelihood methods [18] with
class-labeled data over a large area that includes many class
transitions, but unlike the labeled data for the observation
models or the ground and class height interactions, this type
of training data is difficult to collect. However, changing the
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Fig. 7. Simulation experiment showing transition from ground to tall vegetation with missing and ambiguous data. The dashed line in (a) shows the true
ground height. The model is able to infer the hidden ground surface (b), the height of the vegetation (c), and the correct classification.

class interaction prior affects the system output in an intuitive
way by controlling how much classes tend to clump together,
so this parameter can be set manually.

VII. RUN TIME

Performing inference in this model is computationally inten-
sive because of the repeated calculations necessary to sample
from the model. We maintain a 150x150 grid of 15cm square
voxel columns in our terrain map, which covers a 22.5 meter
square area. Our system runs a loop that updates the local
terrain map at approximately 1Hz. Within this loop, the system
computes the observation likelihood products, calculates 20
samples from each column in the map, and updates the mean
ground height, class height, and most likely class from the
samples in each column.

At a vehicle speed of 1m/s, our procedure results in ap-
proximately 200 samples for a given terrain patch before the
vehicle reaches it. Although sampling convergence is difficult
to prove, the system generally finds the solution quite rapidly
in our experiments, allowing us to run the system in real time.

VIII. S IMULATION RESULTS

We have presented a terrain model that includes spatial cor-
relations to better handle missing and ambiguous data in dense
non-penetrable vegetation. The model is designed to recover
an accurate estimate of the ground surface despite having only
indirect observations and without needing to explicitly train on
the vegetation height. This section shows a simple two-class
simulation result that verifies these properties.

Figure 7(a) shows simulated data of a transition from ground
to tall vegetation. Imagine the vehicle is approaching from the
left, so initially the sensors get measurements of the ground,
the front of the vegetation, and the top of the vegetation, but
since the vegetation is dense there are no range measurements
of the ground surface under the vegetation. The dashed line
gives the true ground height, showing that the ground under
the vegetation is flat and then angles up a hill. There are some
columns with missing data, and some voxels in the vegetation
match the appearance of ground, as shown by their light gray
color. Although there is no data under the ground or vegetation
surfaces, the voxels above the ground and vegetation are full of
pass-throughs. The ground and vegetation appearance models

Ground Light yellow vegetation

Obstacle Dark green vegetation

Fig. 8. Classes used in results

were set to match the simulated input appearance data so we
could study the effects of spatial correlation in the model.

Since this example assumes the vehicle is approaching from
the left, the system was initialized with theground column
class, a ground height of 2, and a voxel state class height of
0 (the voxel stateground class has no height). The sampling
inference procedure given in algorithm 1 was then run for 100
iterations (each iteration produces samples from every column)
which took 0.5 seconds. The final 50 samples from each
column were used to find the most common class, the mean
ground height, and the mean class height (although we allowed
50 iterations of “burn in” time to let the sampling procedure
converge, the system actually converged after approximately
5 iterations).

Figure 7(b) shows the ground height estimates, Figure 7(c)
gives the class height estimates, and both show the classi-
fication results for each column. These values represent the
most likely explanation of the data given the prior knowl-
edge encapsulated in the model. Although the system was
never trained on the height of the vegetation, it was able
to recover the vegetation height and use it to estimate the
ground height including the hill. The ground smoothness and
similar vegetation height assumptions combine to constrain
the ground height at the transition from visible ground to
vegetation and propagate the observed vegetation height at the
transition through the rest of the simulated region.

The model structure also allowed the system to handle
missing and ambiguous data. The class prior makes it likely
that the areas in the vegetation with missing data are also
vegetation. The ambiguous data patches in the vegetation
have appearance properties similar to ground, but the ground
smoothness prior makes it extremely unlikely for the ground
to be at that height, so the model infers that these areas are
actually vegetation.

The class height estimates in Figure 7(c) are not completely



(a) View from the tractor (b) Spatial model output (c) Independent column output

Fig. 9. The white shed (a) has an appearance that is similar to theground class, but the smooth ground prior makes such a height change very unlikely so
the spatial model (b) classifies the shed as anobstacle. Classifying each column independently (c) results in the shed being classified asground.

uniform. There is a crease where the hill starts because the
model ground prior enforces a smooth transition from the flat
region to the hill in Figure 7(b) whereas the simulated data in
Figure 7(a) has an abrupt angle change. The class heights at the
far right become slightly larger because of the conflict between
the ground prior enforcing a smooth flat ground estimate and
the class height prior enforcing a uniform estimate of the
vegetation height.

The class height predictions are slightly lower in the missing
data areas because of asymmetric data evidence. In the absence
of any data, the class prior would give the missing data areas
a symmetric class height distribution around the true class
height. However, the large number of pass-throughs above the
missing data areas produces a strong constraint that cuts off
the top of the class height prior distribution. Therefore the
class height samples in areas with missing data are biased
low. Since there are no hits in that patch, it is reasonable to
expect that the vegetation height is lower in this area.

IX. RESULTS

We have tested this model with real data at a nearby
working farm and an undeveloped area with tall weeds. The
following examples highlight the benefits of including spatial
correlations in areas with dense non-penetrable vegetation.
We demonstrate the system’s ability to detect obstacles in
vegetation and we also show what happens when the smooth
ground assumption is violated.

In each case, after training the model on representative
terrain, we drive the vehicle through the test area while
letting the Gibbs sampler run continuously. Running at 1Hz,
the system calculates the observation likelihoods, computes
samples from the model, and updates the local terrain map
with the most commonly sampled class and the mean of the
ground height and class height samples.

As mentioned in section I, our goal is to find the supporting
ground surface and the location of obstacles. The result figures
in this section show a single class color label (see Figure 8)
for each column, giving the most commonly sampled class.
Each column also displays a single height based on the
mean of one of the transitions in that column, but which
transition is displayed is a function of the column’s class. For
columns labeled asground or vegetation, we care about the

supporting ground surface, so the results show the inferred
ground height (the transition fromground to free-spaceor
ground to vegetation). For obstaclecolumns, we care about
the height of the obstacle, so the results show the class height
on top of the ground height (the transition fromobstacleto
free-space).

To show the benefit of including spatial correlations, we
compare our model result with a system that uses the same
trained observation models but makes independent classifica-
tions for each column instead of incorporating spatial structure.
This comparison system produces the most likely class for
each column using only the observations in the voxels in that
column. To produce results comparable to our model output,
it uses the highest hit in the column as the transition tofree-
space. For vegetationclass columns, it uses the lowest hit or
pass-through in that column as its estimate of ground height.

A. White shed

Figure 9 shows the tractor as it approaches a white shed.
This is a large obstacle that could be reliably detected in a
variety of ways, but it will serve as a good example of how
the various pieces of our model interact to produce the correct
result. Figure 9(b) shows the output of the model, including a
useful classification of the scene and a smooth ground estimate
that would work well for vehicle navigation. It classifies the
shed as an obstacle and correctly captures the hill sloping
down to the right despite the presence of sparse vegetation.

This example is interesting because the voxels containing
the walls of the shed have observations that make theground
class much more likely than the broad uniformobstacleclass.
However, the spatial prior on a smooth ground surface makes
it extremely unlikely that the ground height would have a
tall step discontinuity at the shed wall. Since the density and
appearance data are not well described by the vegetation class,
the shed is correctly classified as an obstacle.

Figure 9(c) shows the output of the system when the
neighborhood interactions are ignored and the columns are
assumed to be independent. Without neighborhood informa-
tion, classification is based solely on the data likelihood for
each column HSMM model. Lacking the smooth ground prior,
the wall is classified as a collection of tall columns of ground
voxels. A vision system that ignores 3D structure and only



(a) View from the tractor (b) Spatial model output (c) Independent column output

Fig. 10. (a) A challenging scene with a person in camouflage in tall weeds with low grass and a dirt mound. The person and dirt mound both have a
high temperature that matches theground class, but the spatial model (b) disambiguates the two by inferring the hidden ground beneath the vegetation. The
independent result (c) shows the ground heights on top of the dense tall weeds and misclassifies parts of the person and dirt mound.

makes a classification based on the observation models we
use would produce a similar result. Figure 9(c) also shows
that without the spatial ground and class priors, the ground
height estimates and classification labels are generally more
noisy.

If the white shed actually was an earthen cliff, our model
would produce similar predictions and the wall of dirt would
be labeled as an obstacle. Our ground smoothness prior
encapsulates the assumption that such abrupt changes in the
ground surface don’t occur. This is not a problem since the
output terrain model is used to find a drivable ground surface
for robot navigation so a wall of dirt should be classified as
an obstacle.

B. Tall vegetation

Figure 10 shows a challenging scene containing a cam-
ouflaged person in tall weeds with low grass and a small
dirt mound to the right. Both the person and the dirt mound
have high infrared temperature, so a simple obstacle detection
system that performs a threshold on temperature may classify
both of these objects as obstacles. We show that the structural
assumptions embodied in our model allow the system to
disambiguate these two objects.

We trained the model on bare ground, low grass, and
tall weeds. Figure 10(b) gives the model ground height and
classification results. Inference over the model results in the
correct classification of the person and the dirt mound, as well
as the two types of vegetation. The area to the right of the
person in the shadow of the tall weeds is classified as ground.
Although that area is actually low grass, since the system has
no data from the area, ground is a reasonable estimate.

Using the model structure and the known ground height
under the vehicle allows the system to produce reasonable
estimates of the ground height even in areas where the ground
is hidden. In addition to providing a smoothing prior, neigh-
borhood interactions allow information to propagate. Fixing
the heights under the wheels affects the ground estimates in
the surrounding area. Columns with little or no data can still
produce useful estimates by relying on their neighborhood.
The system can infer the common vegetation height of the
tall weeds from areas where the ground is more directly
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Fig. 11. Ground estimate comparison for the area in Figures 10(b) & 10(c),
showing the improved ground height estimates of the spatial model

observable, such as under the vehicle or the transition to
tall weeds behind the person. The assumption of a common
vegetation height, in turn, allows the system to infer the ground
height in areas where the ground is not directly observable.
Knowing the ground height allows the model to explain the
dirt mound as a rise in the ground but the person as an obstacle.

Assuming independence prevents information from prop-
agating. Figure 10(c) shows the lowest point and the class
estimates when no neighborhood information is used. The
lowest point does not penetrate the dense vegetation so it
provides poor estimates of the ground height. Both the dirt
mound and the person are classified as a mixture of dirt and
obstacle columns. Also without neighborhood information, the
vegetation class predictions contain many isolated misclassifi-
cations due to ambiguous data.

Figure 11 illustrates the quality of the ground height es-
timates from Figure 10. After computing estimates of the
ground height using our model, we drove through the scene
toward the area between the person and the dirt mound,
and made measurements of the ground height using our
wheel locations. This trajectory is marked as “True height” in
Figure 11, and offers a comparison for the estimates produced
by the model and those using the lowest hit or pass-through in



(a) View from the tractor (b) Spatial model output (c) Independent column output

Fig. 12. The tractor (a) is on a steep side slope with dense vegetation at the bottom of the hill. The spatial model (b) infers the ground height beneath the
vegetation which could correctly trigger a roll-over hazard. The independent model (c) incorrectly predicts that the tractor could drive on top of the vegetation.

each column. The model ground estimates are fairly smooth
and stay within approximately 20cm of the true value.

Current approaches that filter out vegetation from the ground
surface generally rely on the deepest range penetration, but
for dense non-penetrable vegetation this performs very poorly
since there are no range points that reach the ground. There-
fore, in addition to comparing our model to the lowest hit or
pass-through, we also compare it to an approach that adjusts
the lowest hit in each column based on the independent column
classifications shown in Figure 10(c). Instead of using spatial
structure to infer the vegetation height from the data as in our
model, this approach simply uses the average height of each
class from the training data for the offset. Figure 11 shows that
this can work well when the classification is correct and the
actual vegetation height matches the training data, but it suffers
from misclassification and the lack of a smoothing prior.

C. Vegetation on a Slope

The previous section demonstrated how the model’s struc-
tural assumptions enabled improved ground height estima-
tions. However, in that example the ground was generally
flat so a system that simply classified all vegetation as safe
could have succeeded without correctly estimating the ground
surface (although detecting positive obstacles such as the
person would be more difficult without the ground height).
This section shows an example where treating vegetation as
drivable could lead to dangerous behavior but finding the
supporting ground surface enables the vehicle to stay safe.

Figure 12 shows the tractor as it is driving along a path
on a steep 14-degree side slope with dense vegetation at the
bottom of the hill. The vegetation at the bottom covers and
hides the supporting ground surface underneath. Figures 12(b)
and 12(c) show a view from in front of the tractor of the
range point data, as well as estimates of the ground height
and the classifications. As in the other result figures, each
column is colored using the class label of that column, and
the height of thevegetationcolumns shows the transition from
ground to vegetation. If instead we showed the states of the
individual voxels, then the portions of the columns visible in
Figures 12(b) and 12(c) would beground state voxels and

there would bevegetationstate voxels above the displayed
transition fromground to vegetation.

The path that the tractor is driving on has a high side slope,
and the ground becomes even steeper on the lower part of
the hill under the vegetation, which could result in a roll-over
hazard. The dense vegetation prevents laser measurements of
the ground, so a system that uses the lowest point for the
ground height would treat the top of the vegetation as the
supporting surface, as shown by the ground height predictions
in Figure 12(c). This would make that part of the hill appear
to be fairly flat and traversable, when it actually contains a
steep side slope and could represent a roll-over hazard.

Figure 12(b) shows the spatial model ground height esti-
mates. This approach correctly infers a ground surface below
the vegetation, and the resulting ground surface predicts a high
slope in that area that could be used with a vehicle model to
check for roll-over conditions.

The model assumptions of smooth ground and similar vege-
tation height enable the system to infer the ground surface be-
low the vegetation, even though the system was never trained
on the height of the vegetation. As in the simulation example
in section VIII, the transition from ground to vegetation at
the edge of the path allows the system to infer a vegetation
height which then propagates through the spatial correlations
in the model to drop the ground surface below the top of the
vegetation. The system also tries to produce smooth ground
estimates between the observed ground height on the path near
the tractor and the data from the bottom of the slope (not
visible in the figures). These various constraints combine to
produce an accurate ground estimate in this difficult example.

D. Ledge Step Hazard

The previous sections looked at examples where the model
assumptions of smooth ground, class continuity, and similar
vegetation height were generally correct. This section explores
what happens when model assumptions are incorrect.

Our main test area did not have any areas with non-smooth
ground so a wooden ledge was constructed. Figure 13 shows
the tractor as it approaches this ledge, and Figure 13(b)
gives the model ground height estimates. The ledge has an
appearance that matches the ground class, so there is a row



(a) View from the tractor (b) Spatial model output (c) Spatial model output (side)

Fig. 13. (a) A ledge creating a discontinuity in the ground surface. The ledge violates the smooth ground assumption so the model (b) makes the reasonable
inference that the ledge is an obstacle. (c) The ground height predictions beyond the ledge are lower than the true ground height.

of columns classified as ground, but the ground prior makes
the taller portions of the ledge unlikely to be ground and their
appearance does not match any other class, so the ledge is
reasonably classified as an obstacle.

As shown in Figure 13(b), the ground estimates beyond the
ledge are significantly lower than the true ground height. The
model has explained the higher data points beyond the ledge
with dense medium height vegetation on low ground instead of
short vegetation on higher ground. Figure 13(c) provides some
insight into why the model produces this estimate. The vehicle
is positioned in taller vegetation of similar appearance to the
shorter vegetation beyond the ledge. Based on the similarity
in appearance, the system infers that the two patches of
vegetation belong to the same vegetation class. Consequently,
the assumption of common vegetation height propagates the
height of the taller vegetation surrounding the vehicle to the
area beyond the ledge. This combines with the smooth ground
prior to underestimate the ground height beyond the ledge.

E. Longer run through varied vegetation

Figure 14 shows ground height estimates for a longer test set
through varied vegetation. Unlike Figure 11, which presents
a snapshot of the predictions at different distances in front of
the vehicle at a given time, Figure 14 shows predictions at a
constant 6 meters in front of the vehicle as the vehicle moves
forward. The lowest hit line shows that the first 70m of the path
contained two sections of tall dense non-penetrable vegetation,
and the remainder of the path consisted of low vegetation with
various tall sparse vegetation and a few small patches of dense
vegetation (e.g. 170m). The model output is generally smooth
and closely matches the true height, whereas the lowest hit
rarely reaches the ground, and the estimate using lowest hit
with class offset is often correct but very noisy because of
misclassifications due to its independence assumption.

X. CONCLUSION

Our probabilistic terrain model provides a natural way
of combining different types of sensor data with reason-
able assumptions about the world—particularly in agricultural
applications—such as ground smoothness, class continuity,
and similarity in vegetation height. These assumptions are
incorporated as a model prior and help constrain the problem
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Fig. 14. Ground estimate comparison for longer test path through varied
vegetation, showing predictions made 6m in front of the vehicle as the vehicle
drove (note the two axes have very different scales)

when the sensor data is ambiguous. Except for the class neigh-
borhood prior, which can be easily tuned by hand, all model
parameters that control the difficult task of weighting the
different sensor data appropriately are automatically learned
by the system by simply driving through representative terrain.
Our approach can find obstacles without needing to explicitly
model them or collect obstacle appearance training data.

We have applied this approach in realistic test conditions
and have shown that the use of spatial structure in our model
improves ground height estimation and obstacle classification
over an equivalent model that ignores spatial structure. Al-
though computationally intensive, the algorithm can run in
real time for moderate vehicle speeds of 1-2m/s.

In areas where our model assumptions are generally true,
the model structure allows the system to infer the supporting
ground surface even when the ground is hidden by dense veg-
etation. Joint inference of class, ground height, and vegetation
height allows the system to produce better estimates of each,
since knowing the ground height helps disambiguate obstacles
from the ground, and knowing the class and vegetation height
helps determine the ground height.

When model assumptions are violated, the model often
produces a desirable result, such as treating a ground discon-



tinuity as an obstacle, even though the resulting ground height
estimates are inaccurate. This model could also be extended
to include additional class models for overhanging obstacles
and holes in the hope of broadening the set of environments
where our assumptions are valid.

Although we can generally perform inference in the model
in real time for moderate vehicle speeds, the algorithm
presented is still computationally demanding. Perhaps other
approximate inference schemes would be less computationally
intensive than Gibbs sampling, while still offering the benefits
of including the spatial constraints presented in this model.
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