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Abstract— Current approaches to off-road autonomous navi-
gation are often limited by their ability to build a terrain model
from sensor data. Available sensors make very indirect measure-
ments of quantities of interest such as the supporting ground
height and the location of obstacles, especially in domains where
vegetation may hide the ground surface or partially obscure
obstacles. We introduce a generative, probabilistic terrain model
that exploits natural structure found in off-road environments
to constrain the problem and use ambiguous sensor data more
effectively. The model includes two Markov random fields that
encode the assumptions that ground heights smoothly vary and
terrain classes tend to cluster. The model also includes a latent
variable that encodes the assumption that vegetation of a single
type has a similar height. The model parameters can be trained
by simply driving through representative terrain. Results from a
number of challenging test scenarios in an agricultural domain

reveal that exploiting the 3D structure inherent in outdoor . S
domains significantly improves ground estimates and obstacle respect to the ground) to permit stable and robust navigation,

detection accuracy, and allows the system to infer the supporting €ven through areas where the ground is not directly observed.
ground surface even when it is hidden under dense vegetation. The challenge lies in expressing this type of structure in a way
that can be made useful in autonomous navigation tasks.
. INTRODUCTION In this paper, we describe a generative, probabilistic ap-

Autonomous navigation in outdoor environments, such @soach to modeling terrain. The model exploits the 3D spatial
those encountered in agriculture, mining, and exploratig@ructure inherent in outdoor domains and an array of noisy
applications, is often performed using a model predictideut abundant sensor data to simultaneously estimate ground
control framework [1]. In this framework, a terrain modeheight, vegetation height and classify obstacles. Joint inference
is used in combination with a model of the vehicle to fin@f ground height, class height and class identity over the whole
a dynamic trajectory that avoids obstacles while protectingodel results in more accurate estimation of each quantity. For
against roll-over, body collisions, high-centering, and oth@xample, inferring the vegetation height permits an improved
safety conditions. While faithful models of vehicle dynamicgstimate of the height of the underlying ground. Similarly,
are often available, acquiring an accurate terrain model thatowing the ground height helps disambiguate solid obstacles
includes a description of the supporting ground surface afi@m the ground surface.
any obstacles remains a considerable challenge. To help constrain the problem of joint obstacle detection

Outdoor, off-road environments do not possess structuradd supporting ground surface estimation, our terrain model
landmark features such as road markers, straight walls incorporates a number of spatial assumptions. Two of these
a flat ground plane. This “unstructured” nature of outdoare encoded by distinct but interacting Markov random field
environments complicates terrain model estimation and h@8RF) models. Markov random fields specify the relation-
often been cited as one of the reasons why the developmship between variables through local dependencies. In our
of terrain models of these environments is considered terrain model, one MRF models ground height and enforces
be challenging [1] [2] [3]. However, such environments dour assumption that ground height is smoothly varying. The
possess a great deal of structure that humans frequently exmeitond MRF encodes our assumption that regions associated
in the performance of tasks we wish to automate. For examplgth a particular class tend to cluster (for example, patches
consider a vehicle navigating through a field of vegetationf vegetation of a single type tend to be found together). In
We can use the knowledge that ground is generally smoattdition to the MRF layers, a simple latent variable model is
and that vegetation has approximately constant height (witked to express an assumption that vegetation of the same type

Fig. 1. Tractor test platform



has a similar height above the ground. These three components
interact through a hidden semi-Markov model (HSMM). The
hidden semi-Markov model generalizes the hidden Markov
model [4] by including an explicit probability distribution over
the duration of each state. In our model, the HSMM enforces
vertical structural assumptions such as the understanding that
vegetation grows on top of ground.
The spatial constraints embodied in the terrain model drig- 2. Side view of penetrable vegetation data, with approximate ground
combined with information from multiple sensors on the veh[}¢'9ht: There are range points on the ground and the vegetation.
cle. The sensor models are automatically learned from training
data collected by driving over representative terrain. Training
these sensor models to directly detect obstacles is particularly
challenging because of the wide variety of objects that might
be considered obstacles. People, buildings, equipment, fences
and even holes are all obstacles we wish to avoid while
navigating in off-road environments. There may be little in
common between these things that we wish to classify as ob- o _ N
stacles, and it is impractical to train classifiers to individuallg'ﬁ' d%nsslggn\f;)eggtfr;g;avsehgoevgt]%r:rzrr:gttilw%nrifgr]?wrtr,] m g;;;fogag‘tz 'gerﬁog;“d
detect all possible types of obstacles. Instead, our approacheight. in the tall dense vegetation, there are only range points on the top of
to treat obstacles as having uncertain attributes relative to thevegetation and the ground remains hidden.
more accurate models of the known classes (such as vegetation
or ground). As a result, the model considers surprising andA number of researchers have investigated methods that use
otherwise unexplainable measurements as those most likelydaage data to discriminate sparse vegetation (as shown in Fig-
be associated with an obstacle. This is a common approachure 2) from solid substances such as the ground or obstacles.
anomaly detection, and has been used for detecting obstadlbesese techniques exploit the fact that range measurements
in an agricultural domain [5]. often penetrate sparse vegetation, but do not penetrate solid
Our use of MRFs to encode horizontal spatial correlatiomdbstacles. The properties used for discrimination fall into two
precludes an analytical solution to the inference problemategories: shape and density.
However, by exploiting an organization of our data into Shape-based methods begin with a 3D cloud of range points
vertical HSMM columns, our approach allows us to modelnd look at local features of the data points to discriminate
3D structure in a reasonably efficient inference scheme. Gibiistween the random spread of points in sparse vegetation and
sampling over the MRF structures lets us perform exaitte organized structure of points on solid objects. Researchers
inference in the HSMM models using an efficient dynamibave modeled the statistics of laser penetration in grass to
programming algorithm. This substantially reduces compfiind solid objects [8], and they have compared measurements
tation time over a full 3D MRF model, and although oumcross time and space to filter out areas where the pene-
approach is computationally demanding, the system can ration is continually changing [9]. A comparison between
in real-time. techniques that look for the range shadow of solid obstacles
and techniques based on local point statistics is given in [7].
Il. RELATED WORK The strategy of computing local statistics about the spread of
Early work in terrain perception considered domains whemints was expanded in [10] to discriminate between sparse
the supporting ground surface is directly observable amdgetation, solid surfaces, linear structures such as branches,
objects above the ground are generally obstacles [1] [2]. &amd even concertina wire [11].
these domains, the range measurements can be used directYensity-based methods attempt to use range measurements
to estimate the ground surface and find positive obstaclésexplicitly measure the density of objects in the environment.
which enables successful navigation. As shown in Figure Phis has been done by dividing the world into small volumes
the presence of vegetation makes the problem much maifespace and then maintaining density scores by keeping track
difficult because the range points from forward looking sensoo$ lidar hits and pass-throughs [3], [12] or lidar and radar
such as a laser range-finder or stereo cameras do not generatyasurements [13].
give the supporting ground surface. Classification of vegetationThe above methods have shown promising results in sparse
[6] (also common in the remote sensing community — seegetation, but they do not address the problem of estimating
references in [7]) is not sufficient for this task because a gragkye ground surface in dense vegetation where the ground is
area on a steep slope may be dangerous to drive on whers@spletely hidden as in Figure 3. We have previously used
the same grass on a flat area could be easily traversable. &dine learning methods to automatically learn the mapping
successful navigation in many off-road environments, a systéram features of the sensor data to ground height predic-
must be able to recover the supporting ground height and tiiens [14]. This system was able to predict the location of the
true obstacles, even in the presence of vegetation. ground height under dense vegetation while still finding solid
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obstacles. However, the system explicitly learns a vegetation
height so it is not general across vegetation of the same type
with unknown height, and the ground height estimates in dense
vegetation are very noisy and have large errors. One reason
for this is that this method makes the strong assumption of
independence between terrain patches and makes predictions
locally without incorporating spatial context. This can make

it difficult to disambiguate data from tall vegetation and data
from short vegetation, resulting in poor estimates of the hidden
ground height. =

In this article we relax the independence assumption through

the inclusion of spatial correlations. This added structuE%9
allows the model to infer the height of vegetation from the

local sensor data instead of training on it explicitly, and enables

the model to produce a smooth ground height estimate tha %getation that contains a mixture of hits and pass-throughs
well suited to autonomous navigation rom solid objects that contain a majority of hits and only a

few pass-throughs due to sensor noise [3] [14].

||| VEH|CLE PLATFORM AND DATA REPRESENTAT|ON A|th0ugh our data I’epl’esentation iS based on the VOXE|,
vehicle navigation is generally performed on a 2D surface,

Our project team has automated a John Deere 6410 rag-oyr ground height estimates and classification results are
tor (see figure 1) and equipped it with many sensors ffa4e in terms of voxel columns. In our model, thgh

localization and perception [14]. The vehicle has a highjoye| column class is described with a multinomial dis-

resolution stereo pair of digital cameras, an infrared camefaputed random variable’;; taking on values related to the
and two SICK laser range-finders (lidar) mounted on C”Stoﬁbssible contents of the columi};; = ¢ with e.g. ¢ €
i = .g.

actively-controlled scanning mounts. The first scanning lid Uround, vegetation, obstacle}.

is mounted on the roof to get range data over a large ar ssociated with thekth voxel in theijth voxel column

in front of the vehicle, and the second scanning lidar i§ e yoxel statex’, a multinomial distributed random
mounted on the bumper to get high density measurements Qfiahie that describes the nature of the material inside the
nearby terrain and better penetrate upcoming vegetation. Uﬁ‘?(el, XE € {ground, ¢, free-spacg, wherec is the class of
cameras and scanned lidars are precisely calibrated and tigmé( ijth 1\]/oxel colum7nz.7 The ijkth voxel is also associated
synchronized with an accurate global vehicle pose estima\;ﬁ

allowing the system to accumulate data into a high quali%

. 4. Colorized lidar points of farm test site buildings as the vehicle drove
wn a path to the field

th an observation vector formed by the concatenation of
lobal h N Fi 4 ultiple sensor measurement vectors from an array of sensor
global map, as shown In Figure 4. . modalities, Y7, = [Yien, Yrem, Yir, Yeor]. The N lidar mea-

3 ) s . direments are encoded as a binary vettgy, consisting of
thevoxel a 15cm® box-shaped region of 3 dimensional SPace; ones representing hits and— M zeros representing pass-

We represent the vehicle’s local spatial environment as aVO)fﬁ}oughs Associated with each of tHé hit measurements
lattice of size | x J x K, where thejkth voxel is in theijth 510 cqrresponding measurements of laser remission, infrared

po§|t|on of a horizontal ZD grld and thgh position above an temperatures and color (i&en = [Yi,, - Y], Yiem =
arbitrary subterranean origin. vl YM )

Accurate global vehicle pose allows us to assign Iidir rem? rem
points corresponding to the same region of space to the IV. TERRAIN MODEL

same voxel. Exploiting the precise synchronization of the
sensors, we project lidar points into the most recent color andVe use a probabilistic generative model to encode the
infrared images, so that each lidar point results in a vectdgsired spatial correlation assumptions described in the intro-
of appearance measurements for that voxel, including lagkiction. In this section we describe the model at three different
remission (reflectance), infrared temperature, and dolor.  levels:

The voxel representation also allows us to maintain a. Voxel observation models
density estimate throughout space by comparing how many. Vertical column structure
lidar rays pass through each voxel (pass-throughs) with thes Horizontal neighborhood structure

number of lidar rays that hit something in that voxel (hitS)rhese |evels build on each other from the inside out, going
Density information is valuable when trying to separate spargem, an individual voxel to a voxel column to the entire grid

1 _ ) _ _ of voxel columns. Figure 5 gives a graphical representation of
The lidar scans come in at a much higher rate than the image data so

multiple scans are projected into the same image. However, the high pigé?Ch of these three levels.

density of the images means that we collect approximately 100 pixels for

every lidar point. This coupled with the continual movement of the scanning2In our implementation, the possibility of a voxel column simultaneously
lidars makes it unlikely that a single pixel is used more than once, so we treantaining obstacle and vegetation is excluded, though its inclusion is a trivial
each color and infrared tagged lidar point as an independent measuremeektension of the model we present.
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(a) Voxel model (b) HSMM models (c) MRF model

Fig. 5. A graphical description of the model showing (a) the voxel, (b) the voxel column, and (c) the connections between voxel columns. For each voxel
columnij, the model contains voxel statééi’g, observationé/i’;, and a clas€’;;, class height{;, and ground heithfj that interact with neighboraV; ;
and the common class height® ’

Before describing each level of the model in detail, we offex hidden semi-Markov model. Each class has an associated
a perspective on the entire model by exploring the procedSMM model that determines the state values for each voxel
of generating measurement data. The model contains timothe vertical chain. For instance, below the sampled ground
Markov random fields. One MRF codifies our assumption thhaeight, all states assume the valyreund For the vegetation
the ground height varies smoothly with distance. Thus wiasses, the states between the ground height and the veg-
expect the ground height of voxel columin to be similar etation height arevegetationand above that the voxels are
to the ground heights of the neighboring voxel columnéee-space
From a generative perspective, conditioned on the values ofConditioned on the values of the voxel states, the material
the neighboring ground heights we sample the ground heigitbperties, such as color, laser remission, infrared temperature
of voxel columnij. Similarly, we assume that neighboringand density are all sampled independently from the appro-
voxel columns will tend to be members of the same clagwiate state specific distribution (e.ground or vegetatio.
Once again, this assumption is represented as an MRF &mdally, conditioned on the values of each material property,
by conditioning on the class memberships of the neighborimgeasurements are sampled independently from the various
columns we can directly sample a class membership fareasurement models.
voxel columnij. To recover the ground heights and class While it is instructive to understand the model from a
memberships of all the voxel columns this process is repeatgeherative perspective, in general we are more interested in the
for all ij. opposite problem: how can one use the modehfer ground

In addition to the ground height and class membershipeights, class memberships and vegetation class heights from
a vegetation class height (relative to ground height) mustal sensor data. This will be the subject of section V. We now
also be determined for each voxel column witlvegetation describe the three levels of the model in more detail.
class membership. We model the distribution of heights of a ]
particular vegetation class as a Gaussian centered about s§m&0x€l Observation Models
global mean height. For each vegetation class, a global clas®Ve assume that voxels form the smallest indistinguishable
mean height is sampled, and then conditioned on this meslement of space, occupied completely by one (and only
height, the individual class heights of the corresponding voxahe) voxel state. Each voxel state maintains a distribution
columns are sampled. over material properties including density, remission, infrared

Once the ground height, class membership and vegetattemperature, and color that describe the characteristics of that
class heights are determined, their values are used to constsa@tte, but the material inside a single voxel is assumed to be
the properties of each voxel column which is described usingiform. For example, the vegetation state may include a range



of colors, and therefore different voxels in vegetation may havéthin a state.
different colors, but we assume that the color of the vegetationwe develop the marginal distribution for the remission
within each voxel is uniform. values, but the infrared and color data are determined anal-
There are a variable number of observations of the materggjously. The true material propertsern for state valuer
properties in each voxel, and care must be taken in hdsv modeled as a GMM with? mixture components. Each
we combine these measurements. Observations are commadmdividual mixture component is parameterized with mean
modeled as being independent given the state, so that accumy-variances?, and mixing coefficient”(i). Note that these
lating measurements leads to an arbitrary certainty in the stpteameters are unique to then material property. Color and
value. However, such an approach fails to take account of tinérared data are parameterized independently.
inherent uncertainty in the distribution of material properties
for a given voxel state value. K (rem — p;)
This phenomena is best illustrated with an example taker!’ (rem|Xi5=x) ZP \/%QXP <_ 202 >
from one of the experimental scenarios we use to validate (1)
the model (see section 1X-A). This example includes a whitonditional on the true material propertyem, the mea-
shed next to a white road. If the system accumulates collirementsy””,  are assumed to be normally distributed,
measurements for a particular voxel, then it can become ~ N (rem,o?). We integrate out the nuisance variable
arbitrarily certain of the color of that voxel, but knowingrem to get the marginal likelihood for all the remission data
the true color material property of the voxel does not leagd.,, = [yL.,.,...,y2,.], resulting in a mixture of Gaussians
to certainty regarding the voxel's state value. Both the groumlat is a function of the data meap.,, (see [15]).
and obstacle states can exhibit a range of colors, and gathering
evidence regarding the color of the voxel does not resolve t X — / rem)n(rem | X5 = ) d(rem
uncertainty in material properties possessed by the states. DR | : Plyren | M %5 Jdtrem)
Statistically, this problem reduces to the fact that in our i
model, multiple sensor measurements are not independentZP /H P(Yrem | rem)p(rem | ;) d(rem)
conditional solely on the value of the state. For example, “=*

a voxel may contain a vegetation state that includes both (Grem — pi)?
green and yellow material properties. Observing green for that Z e RN}
voxel would then increase the probability of subsequent green *~ 2m (0 + ) (U' + 7)
observations, even if one knows the true state of the voxel. )

However, the measuremendse independent given the true
value of the measured material property. Continuing with the As discussed above, although the measurements are in-
example, knowing that the true color material property of @ependent given the material propery(y,c,, | rem) =
voxel is green makes the color measurements of that voﬂﬁl 1 (Y., | rem), equation 2 shows that the measure-
independent. By explicitly introducing the true unobserveghents are not mdependent when conditioned on the state:
material properties in to the observation model, we can prop&y,em | X” x) # Hm 1P(Yre | ng x). Measure-
erly account for the non-independence of sensor measuremenents are not independent sources of evidence with respect
with respect to the state values. to the value of the state and only influence state inference
The graphical model in Figure 5(a) illustrates the condindirectly through the latent material property.
tional independencies between the voxel sféfﬁ the material ~ Figure 6 further illustrates the effect of including the mate-
property random variableden, rem, ir and col, and the rial property explicitly in the observation model. Figure 6(a)
measurements. Conditional 6", the material properties areshows the GMM remission material property distribution (as
independent, and conditional on the material properties, thiwen in equation 1) associated with the ground, vegetation
measurements are independent. The voxel material propertieg obstacle states. As the figure shows, the remission values
are not directly observed, and we are not concerned wihe a moderately informative feature of state, with lower
their values beyond what they reveal about the state. Thesnission values tending to support a hypothesis of ground
the material properties constitute nuisance variables that oser vegetation. With only one measuremenf (= 1), the
remove from the observation models through marginalizatioremission observation model of equation 2 results in the
as described below. remission probability distribution shown in Figure 6(b). In
1) Appearance:The distributions over the voxel appearthis case there are two significant sources of uncertainty:
ance properties, including infrared temperature, laser remike remission material property associated with each state (as
sion, and color are all inherently multi-modal and thus not weshown in Figure 6(a)) and the uncertainty associated with the
described by a simple parametric distribution. For exampleeasurement itself (represented by the quantify. These
remission values in vegetation are either high because of th@ sources of uncertainty combine to form the relatively high
strong reflectivity of chlorophyll, or very low due to smallvariance distribution shown in Figure 6(b). With 40 measure-
cross-sectional area. We resort to a Gaussian mixture modnts, Figure 6(c) shows that the measurement uncertainty
(GMM) to describe the distribution of the material properties significantly reduced yet the uncertainty with respect to
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Fig. 6. The remission observation model (b) and (c) converges to the material property distribution (a) as the number of measurements increases

the possible remission values associated with each state (easity information and prevent the voxel from correctly being
guantityrem in equations 1 and 2) remains. As more measurelassified adree-spaceBy setting the appearance properties
ments are incorporated, the appearance likelihg@ag.,, | ©) of free-spaceo match the state it is in contact witlyround
converges to the material property distributipver | x). in this example), the transition foee-spaceds decided solely
This is also seen by inspection of equation 2. Ms— oo on density information.
and asy,., — rem (by the law of large numbers), equation 4) Obstacles: Although we expect obstacles to generally
2 converges to equation 1. have a fairly high densitylen, we cannot hope to build an
2) Density: Voxel density values range from empty spacéccurate observation model for the appearance of each of
(den = 0) to completely solid den = 1). Analogous to the innumerable obstacles one might encounter in outdoor
the GMM models used for voxel appearance properties, thgvironments, so we simply use a singlestaclestate with a
distribution of density values for a given statecan be well corresponding uniform distribution over the observable range
modeled using a beta distributiofi(a., b,) which operates of material appearance properties. We rely on accurately
in the rangg0, 1] and has parameters. andb,. that together modeling the features of the trained states to detect obstacles
specify its mean and variance. as a default option when none of the other states are consistent.
Density is represented as the binary vedtgy, (lidar hit or B. Vertical Column Structure

pass-through), and we use a binomial distribution to descrlbeA f | t0 hiah Is withi |
the number of hitd/ = ZN_l Y7  outof N total rays for a S W€ move from Jower to igher VoXels within a column,
n=2l s aen we expect to move fronground to vegetation or perhaps

given voxel density propertyen. As above, we integrate over d to obstacleand wally tof Wi
the nuisance parametéen, and we recover the beta-binomia@"ound to obstacleand eventually taree-space We never
expect free-spaceto be found belowground nor do we

distribution as the marginal likelihood observation model. expecivegetatiorto be suspended abofree-spaceThis type

P(M =m| Xf7 =2x) of structure is naturally imposed by introducing a Markov
L dependency between voxel states that restricts vertical transi-
= /P(m | den)p(den | X5 = ) d(den) (3) tions, thus defining a hidden Markov model within each voxel
N\ B(ay + M,b, + N — M) column'. However, the duration of states suchgasund ang_
=\ Blay, by) vegetation are not well modeled by repeated self-transitions
xrs Y

in a Markov chain because this would induce a geometric
This model makes the assumption that a voxel with densifiystribution on the duration of those states. We resort instead
den generates lidar hits that follow a binomial distribution (théo a hidden semi-Markov model (HSMM) [16] over voxel
outcome of repeated flips of a biased coin wifthead$ = states, which explicitly represents a state duration (or height
P(hit) = den). However, since a given statehas a range of distribution) over voxels for each state value.
possible densities, which we model with a beta distribution, Figure 5(b) gives the intuition for a hidden semi-Markov
the distribution over hitsM for a given stater becomes a model. Unlike an HMM which transitions (possibly to the
beta-binomial, which has greater variance than a binomial feame state) at every step, an HSMM remains in a single state
low amounts of dataV, but converges to a binomial a§ value for some random duration (e.gl;; in Figure 5(b)),
becomes large. generating observations from that state at each step. At the
3) Free-space:The free-spacestate does not possess angompletion of the duration, the state transitions to a new value
meaningful material properties beyond densigy.. Lidar hits according to the transition matrix and the process repeats. The
occurring in free-spaceare generally the result of noise sdransitions between states remain Markov, but the individual
we model the non-density material properties as matching tstleps are not Markov since the probability of transitioning
material properties of the states in contact witte-spaceFor depends on how long the system has been in that state.
example, the voxel above ground state voxel may contain ~ As shown in Figure 5(b), we associate a single HSMM chain
many pass-throughs with a single hit due to noise that has structure with each column class;;, making the resulting
appearance that matches tp®und state. If we modeled the column model a mixture of HSMMs. The durations of the
appearance ofree-spaceas uniform, then the strong matchground and class states describe the height of those terrain
in appearance data with tlggound state may overwhelm the elements and are given by}, and ;.



The vertical structure helps constrain the location of vari- As shown in Figure 5(c), we model horizontal structure
ables of interest such as the ground height hidden beneafting two distinct but interacting Markov random fields for
dense vegetation. For example, in Figure 5(b), if we obseretassC;; and ground heithfj, and a latent variable for the
measurements that mak}ég likely to be vegetationand ij common class height/¢ across all columns. These variables
likely to be free-space then the HSMM chain for column interact through the HSMM column models by imposing a
classC;; = vegetation would be likely, and we would also prior over the state durations associated wiflj and Hfj
expect agroundto vegetatiortransition somewhere belowfj and over the column class modéls;.
because of our vertical transition structure. As described in theThe neighborhood dependency 6f; reflects the prior
next section, we can incorporate other information such as tigsumption that class identities are positively correlated with
expected vegetation height and the location of surroundititeir neighbors so voxel columns tend to cluster in contiguous
ground to further constrain the ground height even if it igroups of the same class. We express this preference using the
hidden below dense vegetation and has no direct observatiamnditional MRF distribution
This neighborhood information is incorporated into the column
HSMM models as a prior over the duratiéfy; of the ground P(Cij = c| Cn,) eXp<_)‘C Z (c# Csf)) (®)
state and the duratiofl;; of the class state. {s,t}€Ns

where N;; is the set of neighboring indices arddy,; is the
C. Horizontal Neighborhood Structure set of classes in the neighborhood of thjeh voxel column.

In addition to the vertical structure captured by the HSMM Ground height varies smootk;ly from one patch of ground
column models, there are also significant horizontal depef-the next, so we expect that;; will be tightly correlated
dencies between neighboring columns. The model encodé& nearby values. We express this belief using a Gaussian
assumptions of class continuity, the smoothness of ground, darkov random field
the similarity of vegetation height. This contextual informatio g _ g (_ 1 ( 1 9
helps constrain the problem, especially in areas where deg'é%Hw =h] HNiJ‘) % exp 202, h | N | Z et

vegetation hides the ground surface or in areas with missing (st} el (6)

or ambiguous sensor data. We use Markov random ﬁeldsv&ﬂere|Nij| is the size of the neighborhood (in our experiments
encode our assumptions about class continuity and smog sed a 4-connected neighborhood).

ground. _ _ ~ We also expect that vegetation of the same clasms a

The Markov random field (MRF) [17] is an extensiorsmilar heightF/¢ with some variation. This assumption may
of one-dimensional Markov chain models to two (or morejqt pe valid for obstacles, so we only apply it to vegetation
dimensions. It is commonly used in spatial domains to modghsses, Given the common height of the vegetation in this
structure such as smoothness, class continuity, or other PrQRsa ¢, we model the expected variation with a Gaussian
erties correlating neighboring nodes. It has been successfylyycated by the interval of possible class heights .

applied to many applications including segmentation, noise min Pina]
reduction, surface reconstruction, and texture classificatiorp(Hg — 0| HY) & Ipe  pe eXp(_ 1 (h— hC)z)
[18] 3 (Ppin Ponan) 20%{0

Our terrain model uses a standard two-dimensional MRE, @)

consisting of an undirected graph of nodes on a lattice structgcause of the variation between different types of obstacles,
that connects the voxel columns horizontally and encapsulafég réat the class height of obstacle columns as independent.
the conditional dependencies in the model. For example, theOther constraints can also be included in the model. For
connections in Figure 5(c) show the Markov property for thgX@mple, we can fix the ground height under the wheels of

ground height MRF: the vehicle since these ground heights are known. The smooth
ground prior in equation 6 then allows this information to
P(Hfj | HY) = P(Hfj | H]-‘{,ij) (4) propagate through the model and helps constrain the surround-

ing area.

whereH§ is the set of all ground height nodes afid;, isthe  Our use of Markov random fields to encode spatial correla-
set of neighbors of thgjth voxel column ground height’;.  tions among variables is reminiscent of recent work in texture
The set of neighborgi, = is also referred to as the Markovsegmentation, where an image is assumed to be composed
blanket of the noderj. ' of a number of contiguous regions of uniform texture. One

A key property of the MRF is that the joint probabilityapproach uses one MRF layer to classify textures and a second
over the entire MRF is uniquely specified by the conditiondIRF layer that generates textures using separate parameters
distributions that characterize its local Markov relationshiger each class [19]. This “double Markov random field”
[18]. Therefore, from easily expressible local relationshipstructure is related but distinct from our use of two MRFs
such as the notion that ground is smooth (with ground height the terrain model described above. Similar to the double
changing little between neighboring voxel columns), we aMRF, we maintain a single MRF for class segmentation that
able to infer global quantities such as the supporting grouitderacts with another MRF representing the ground surface,
surface heights of every voxel column. but rather than the parameters of one MRF depending on the



states of the other, we interpret columns of data based on bé{gorithm 1 Gibbs sampling from the model

the class MRF and the ground MRF. Sample common class heights from P(H® | Hfc;;)
Markov random fields have also been used in medical imag-using all the column class height samples of the same class

ing applications to segment various tissues from 3D volumetricfor all MRF voxel columnsij do

data [20]. Here material properties were represented in a voxel- Find ground and class priors from neighbors:

based representation similar to our terrain model. However, in P(Hfj | HJQ\,M)

[20] the MRF was defined over the full 3D neighborhood of P(Ci; | Cn,,)

the voxel, whereas we are able to exploit inherent structure in for all Classes: do

our problem domain to keep the computationally demanding Find class height prior from common class height of

MRF structures to 2D and handling our 3D data in terms of same class:
voxel columns. P(H{; | H®)
Use class HSMM to find probability of the data and
V. INFERENCE distributions over the ground and class height:

The interacting Markov random fields of this model capture P(Yiﬁé | Cij =, Hi/m’ljc)
important structure, but these dependencies prevent analytic P(Hij | Cij = ¢, Yiﬁ"HNm’HC)
determination of the posterior distributid(C, H9, H® | Y). P(HS; | Cyj = ¢, Yy, HY, , H)
The set of HSMMs that describe the data in each column €nd for o
of voxels can efficiently produce distributions over the state Compute class distribution:
durations, which makes it easy to sample from the conditional ~ ©(Cij | Yij, Cw,, HY, H°)

J
distribution x P(Yj; | Ciy, HY, HY)P(Cij | Cn,y)
Samplec;; from P(Cy; | Yij, On,,, HY,,, H°)
P(Cij, Hi;, Hyj | Yij, Cn,, HY,  HE) (8) Samplend; from P(HY, | Cij = cij, Yij, H,  H)
c c = . g c
so we use Gibbs sampling [17] to approximate inference. enia;g]rplehij from P(H; | Ci CZJ’KJ’HNWH )

Algorithm 1 describes the application of Gibbs sampling te
our model. The HSMM column models require a distribution
over class heights which comes from the common class heighfThe forward-backward computations are still performed
latent variable H¢, as shown in Figure 5(c). Samples opver the individual spatial stepk}; as in an HMM, but with
the common class height are produced from its conditionah HSMM one must solve for the duration of each state, so in
distribution given the current column class height samples addition to summing over possible state transitiohswve also
sum over possible state duratiolsEquations 10 and 11 give
P(H =h|Hep ) exp< -1 (h—i Z h?4)2> the HSMM forward and backward probabilities; . and3}; .
“ 20%./D¢ De e Y for spatial stegk of the class: chain in MRF voxel columnj.
77 (9)  We use the observation independencies and the deterministic
where D¢ is the number of columns with clags transitions of our chain structures to reduce the computational

Once the common class heights have been sampled,complexity. We use the notation~ and z* to refer to the
each voxel column is sampled. The first step of the samplifeVvious and next states in the chain of the current class.
procedure is to find the priors over clagg,;, class height B 1k - g .

H¢; and ground heightl/; from the neighbjors, as given in Cid.c(%) = P(statex ends atk, V™ | Cyj =, Hy, , HY)
equations 5 and 6, and the common class heigttas given :ZZP(XZ:x,ij’h: x, H:=h, Yé:’“ | Cij,HJgVU,HC)
in equation 7. The priors of;; andHfj are then incorporated = &

into the HSMM model as priors over state durations and are k )

shown in the subsequent equationsAgIy; = h | H¢) for = [ P} [P =n| HY,  H )l )
the class state = c or P(HJ;, = h | HY, ) for the ground h k'=k—h+1

statex = g. ’ (10)

Once the prior distributions are found, the class HSMM
structures are used to find the probability of the data and tb%c(x) - p(yi’;HrK | statex ends atk, Cy; = ¢, HY, , H°)
state duration probabilities for each class. HSMMs use a vari- Kt LK | v P — ;J .
ant of the standard forward-backward dynamic programminﬁZZP(Yzj | Xij =2, X5 =, Hy :h’CU’HNi.pH )
solution used for inference in regular HMMs [16]. As shown & th
in figure 5(b), an HSMM maintains durations (corresponding ' / ot .
to height in our case) so that a single state is active over:az H P(Yi?' er)P(HiJ' =h| ng\hj’H ijjrch(ﬁ)
number of spatial steps up the chain. This formalism is very b ki=h (11)
natural for finding ground height or class height because the
neighborhood information can be included as a prior on theSince we know by assumption that the chain must end in
corresponding state duration. the final stater = free-spacethe probability of the data for



classc is the final value ofx in that state. drive over as training examples for that class. This process
is then repeated for other classes suchgesund Unlike
[14] which directly trains on the height of different types of

As described in Algorithm 1, this is combined with the clasegetation, we only train on the various material properties
prior P(C;; | C,,) to find the distribution over classes, whictPf vegetation voxels, allowing us to remain general across
is used to sample a new class. vegetation heights.

Finding the distribution over state durations involves com- Each labeled voxel collected by driving through represen-
bining o and 3. As above, equation 13 takes advantage &tive terrain is used as a training example for the observation

the deterministic transitions of the chain structures to reduB¥dels in equations 1, 2, and 3. For appearance data such
computation. as remission, infrared and color, the mean values from each

. ) ’ .. Vvoxel are used to train the GMM observation models (i.e. for
ij.c(h) = P(statex has duratiom | Yi;, Cij = ¢, Hy, . H)  remission data,;, o2, P(i) in equation 1) and the variance
:Z P(XE =a, XF " =0~ | Yy, Cy HY,  H) of measurements within the voxels is used as the GMM
(%] )<y 179 ~1] Nija : . :
= measurement model varlanoef](ln equation 2).

P(Yi; | Cij = ¢, HY, ,H®) = o (x = free-spacg (12)

ij,c

k Hit and pass-through data from the labeled training voxels
:Z Hp(y.k'\w)p(ﬂ.w.:h\ng H®ar=Mz=)p% (x) are used to find the maximum likelihood parameters of the
17 1] N;j;» 1J,¢C 17,C A i X A A
% ki—k—hil beta-binomial density modek { and b, in equation 3) for
(13) each class state using a Newton-Raphson method [21]. This
. : . handles class states liggoundandvegetationbut the density
We know that in each chain, every state transition must OCCL?Obstacleandfree-spacestates must also be trained. Tiee-

. . 0
after some duration, so we can normalize By, ¢}’ .(h) to : . : ) :
L 17,C
get the posterior on ground and class height conditional on t%%acedensny can pe trained using o!ata ‘h?‘ mcluqles ms_ects
r dust that occasionally returns a lidar point, or it can just

neighbors. Samples are then drawn from these dlstnbutlong.e set manually to strongly favor empty space. Similarly, the

P(Hfj =h|Cy =cY,, HJQVU ,HE) = (ijzcgm“”d(h) 14) obstacledensity can be trained using hit and pass-through data
P(H{; = h | Cij = ¢, Yiy, HY ,H®) = (559 Gn) Lrom representative obstacles, or it can be set manually to favor
i ’ ense objects.
The time complexity of HSMM calculations is greater .
than an HMM because of the sum over possible duratiors, Neighborhood Models
but the observation likelihood produciq P(Yi’;/|x) can be  The priors given in equations 5 and 6 describe how class
pre-computed and the state durations to search over canabd ground height depend on their neighbors, and the prior
constrained based on the priors to reduce the complexityitoequation 7 describes how column class heights are related
O(num VozelsxnumStatesxmaxDuration) for a single chain. to the common class height. Each of these priors contains
Although it is typically difficult to show that Gibbs samplingparameters that quantify the tendency for classes to clump
has converged, we have found empirically that the model fintiigether, the smoothness of the ground, and the variability of
a good estimate quickly, allowing for real-time execution. vegetation class heights. As above, we train these parameters
by driving over representative terrain.
VI. LEARNING As we drive over an area, we record the ground heights
The model described in section IV incorporates prior knowfeasured by the location of our wheels. We use these height
edge about the structure of the environment, but the specHigquences to find the standard deviatignof typical ground
model parameters must be learned from training data. Thdwight variation between voxel columns, which gives us the
parameters include the sensor observation models for eashdximum likelihood estimate of our Gaussian MRF ground
state and the neighborhood interactions for class, class heigigighborhood prior [22].
and ground height. The generative nature of our model allowsSimilarly, as we drive through vegetation, we get an approx-
us to decouple the learning problems, and train each of théseite vegetation height measurement by taking the highest
observation and neighborhood interaction models individualldar hit and subtracting the known ground height (from the
thus greatly simplifying the learning task. wheel locations). Since we assume that vegetation heights are
. independent given the common vegetation height in the area,
A. Observation Models we can find the class prior standard deviatiop. directly
Collecting labeled training data is often expensive, efrom this sequence of class heights.
pecially in outdoor environments where there can be highThe class interaction prioAc gives the probability that
variation in sensor readings so that a large training set&sclass transitions to a different class. This could be es-
needed. We use an approach based on [14] to collect latgeated directly using pseudo-likelihood methods [18] with
guantities of labeled training data to automatically train owlass-labeled data over a large area that includes many class
observation models. Specifically, we drive through represeamnansitions, but unlike the labeled data for the observation
tative terrain of a single class such wasgetationand store models or the ground and class height interactions, this type
the sensor measurements from the voxels of columns that efetraining data is difficult to collect. However, changing the



(a) Simulated input data (b) Classification and ground height (c) Classification and class height

Fig. 7. Simulation experiment showing transition from ground to tall vegetation with missing and ambiguous data. The dashed line in (a) shows the true
ground height. The model is able to infer the hidden ground surface (b), the height of the vegetation (c), and the correct classification.

class interaction prior affects the system output in an intuitive [1Ground [] Light yellow vegetation

way by controlling how much classes tend to clump together, .

so this parameter can be set manually. B Obstacle [l Dark green vegetation
VII. RUN TIME

Fig. 8. Classes used in results
Performing inference in this model is computationally inten-

sive because of the repeated calculations necessary to saplg, set to match the simulated input appearance data so we
fromlthel model_. We n:amtgln a 150Xhl,52 grid of 15;:2153qua}[%u|d study the effects of spatial correlation in the model.
VOXE! COIUMNS I OUT terrain map, WhICh COVErs a 22.5 me erSrince this example assumes the vehicle is approaching from
square area. Our system runs a loop that updates the Iqﬁ% left, the system was initialized with trground column

terrain map at approximately 1Hz. Within this loop, the SySte%]Oass, a ground height of 2, and a voxel state class height of

computes the observation likelihood products, calculates . 4
. the voxel statground class has no height). The sampling
samples from each column in the map, and updates the me . : .
erence procedure given in algorithm 1 was then run for 100

) : . in
ground height, class height, and most likely class from tr?t%rations (each iteration produces samples from every column)
which took 0.5 seconds. The final 50 samples from each

samples in each column.
At a vehicle speed of 1m/s, our procedure results in ap- )
olumn were used to find the most common class, the mean

proximately 200 samples for a given terrain patch before theOunol height, and the mean class height (although we allowed

vehicle reaches it. Although sampling convergence is d|ff|c1d.g() iterations of “burn in” time to let the sampling procedure

to prove, the system generally finds the solution quite rapi c%nverge the system actually converged after approximately
in our experiments, allowing us to run the system in real timg'iteratioﬁs)

VIII. SIMULATION RESULTS Figure 7(b) shows the ground height estimates, Figure 7(c)

We have presented a terrain model that includes spatial c@ies the class height estimates, and both show the classi-
relations to better handle missing and ambiguous data in defi§ation results for each column. These values represent the
non-penetrable vegetation. The model is designed to recol@@st likely explanation of the data given the prior knowl-
an accurate estimate of the ground surface despite having offige encapsulated in the model. Although the system was
indirect observations and without needing to explicitly train oR€ver trained on the height of the vegetation, it was able
the vegetation height. This section shows a simple two-cld€s recover the vegetation height and use it to estimate the
simulation result that verifies these properties. ground height including the hill. The ground smoothness and

Figure 7(a) shows simulated data of a transition from groufMilar vegetation height assumptions combine to constrain
to tall vegetation. Imagine the vehicle is approaching from tfie€ ground height at the transition from visible ground to
left, so initially the sensors get measurements of the grour¥§getation and propagate the observed vegetation height at the
the front of the vegetation, and the top of the vegetation, biignsition through the rest of the simulated region.
since the vegetation is dense there are no range measurement§e model structure also allowed the system to handle
of the ground surface under the vegetation. The dashed limésing and ambiguous data. The class prior makes it likely
gives the true ground height, showing that the ground undbgt the areas in the vegetation with missing data are also
the vegetation is flat and then angles up a hill. There are som@getation. The ambiguous data patches in the vegetation
columns with missing data, and some voxels in the vegetatibave appearance properties similar to ground, but the ground
match the appearance of ground, as shown by their light grgiypioothness prior makes it extremely unlikely for the ground
color. Although there is no data under the ground or vegetatitth be at that height, so the model infers that these areas are
surfaces, the voxels above the ground and vegetation are fulbgtually vegetation.
pass-throughs. The ground and vegetation appearance modelhe class height estimates in Figure 7(c) are not completely
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(a) View from the tractor (b) Spatial model output (c) Independent column output

Fig. 9. The white shed (a) has an appearance that is similar tgrthumd class, but the smooth ground prior makes such a height change very unlikely so
the spatial model (b) classifies the shed abstacle Classifying each column independently (c) results in the shed being classifggduas

uniform. There is a crease where the hill starts because thgporting ground surface, so the results show the inferred
model ground prior enforces a smooth transition from the flgtound height (the transition frorground to free-spaceor
region to the hill in Figure 7(b) whereas the simulated data ground to vegetatiol). For obstaclecolumns, we care about
Figure 7(a) has an abrupt angle change. The class heights atfieeheight of the obstacle, so the results show the class height
far right become slightly larger because of the conflict betweem top of the ground height (the transition froohstacleto
the ground prior enforcing a smooth flat ground estimate afrée-space
the class height prior enforcing a uniform estimate of the To show the benefit of including spatial correlations, we
vegetation height. compare our model result with a system that uses the same
The class height predictions are slightly lower in the missirtgained observation models but makes independent classifica-
data areas because of asymmetric data evidence. In the abs&ons for each column instead of incorporating spatial structure.
of any data, the class prior would give the missing data areBisis comparison system produces the most likely class for
a symmetric class height distribution around the true clasach column using only the observations in the voxels in that
height. However, the large number of pass-throughs above ttwdumn. To produce results comparable to our model output,
missing data areas produces a strong constraint that cutsibifses the highest hit in the column as the transitioffreée-
the top of the class height prior distribution. Therefore thgpace For vegetationclass columns, it uses the lowest hit or
class height samples in areas with missing data are biageds-through in that column as its estimate of ground height.
low. Since there are no hits in that patch, it is reasonable to .
expect that the vegetation height is lower in this area. A. White shed
Figure 9 shows the tractor as it approaches a white shed.
This is a large obstacle that could be reliably detected in a
We have tested this model with real data at a nearbgriety of ways, but it will serve as a good example of how
working farm and an undeveloped area with tall weeds. Thiee various pieces of our model interact to produce the correct
following examples highlight the benefits of including spatialesult. Figure 9(b) shows the output of the model, including a
correlations in areas with dense non-penetrable vegetatioseful classification of the scene and a smooth ground estimate
We demonstrate the system’s ability to detect obstacles thrat would work well for vehicle navigation. It classifies the
vegetation and we also show what happens when the smosiiied as an obstacle and correctly captures the hill sloping
ground assumption is violated. down to the right despite the presence of sparse vegetation.
In each case, after training the model on representativeThis example is interesting because the voxels containing
terrain, we drive the vehicle through the test area whilhe walls of the shed have observations that makegtband
letting the Gibbs sampler run continuously. Running at 1Hezlass much more likely than the broad unifoaibstacleclass.
the system calculates the observation likelihoods, computdswever, the spatial prior on a smooth ground surface makes
samples from the model, and updates the local terrain migextremely unlikely that the ground height would have a
with the most commonly sampled class and the mean of ttadl step discontinuity at the shed wall. Since the density and
ground height and class height samples. appearance data are not well described by the vegetation class,
As mentioned in section |, our goal is to find the supportinthe shed is correctly classified as an obstacle.
ground surface and the location of obstacles. The result figuresigure 9(c) shows the output of the system when the
in this section show a single class color label (see Figure &ighborhood interactions are ignored and the columns are
for each column, giving the most commonly sampled classssumed to be independent. Without neighborhood informa-
Each column also displays a single height based on ttien, classification is based solely on the data likelihood for
mean of one of the transitions in that column, but whichach column HSMM model. Lacking the smooth ground prior,
transition is displayed is a function of the column’s class. Fthe wall is classified as a collection of tall columns of ground
columns labeled aground or vegetation we care about the voxels. A vision system that ignores 3D structure and only

IX. RESULTS



(a) View from the tractor (b) Spatial model output (c) Independent column output

Fig. 10. (a) A challenging scene with a person in camouflage in tall weeds with low grass and a dirt mound. The person and dirt mound both have a

high temperature that matches th®und class, but the spatial model (b) disambiguates the two by inferring the hidden ground beneath the vegetation. The
independent result (c) shows the ground heights on top of the dense tall weeds and misclassifies parts of the person and dirt mound.

makes a classification based on the observation models we .

use would produce a similar result. Figure 9(c) also shows — True height

that without the spatial ground and class priors, the ground 235} _____ﬂojz;o;ttp;'rtpass

height estimates and classification labels are generally more ok — Lowest hit with class-based offset
noisy.

If the white shed actually was an earthen cliff, our model
would produce similar predictions and the wall of dirt would
be labeled as an obstacle. Our ground smoothness prior
encapsulates the assumption that such abrupt changes in th 0.5r v
ground surface don't occur. This is not a problem since the
output terrain model is used to find a drivable ground surface
for robot navigation so a wall of dirt should be classified as -0.5

an obstacle. ) 0 > p 6 3
Distance in front of the vehicle (m)

Height (m)

T
-
=

-
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B. Tall vegetation
. . . Fig. 11. Ground estimate comparison for the area in Figures 10(b) & 10(c),
Figure 10 shows a challenging scene containing a CaBhowing the improved ground height estimates of the spatial model

ouflaged person in tall weeds with low grass and a small

dirt mound to the right. Both the person and the dirt mound ) N

have high infrared temperature, so a simple obstacle detectffifervable, such as under the vehicle or the transition to
system that performs a threshold on temperature may clas$fij} Weeds behind the person. The assumption of a common
both of these objects as obstacles. We show that the structly@getation height, in turn, allows the system to infer the ground

assumptions embodied in our model allow the system Rgight in areas where the ground is not directly observable.
disambiguate these two objects. Knowing the ground height allows the model to explain the

We trained the model on bare ground, low grass adft mound as a rise in the ground but the person as an obstacle.

tall weeds. Figure 10(b) gives the model ground height andAssuming independence prevents information from prop-
classification results. Inference over the model results in tBgating. Figure 10(c) shows the lowest point and the class
correct classification of the person and the dirt mound, as weitimates when no neighborhood information is used. The
as the two types of vegetation. The area to the right of th@west point does not penetrate the dense vegetation so it
person in the shadow of the tall weeds is classified as groufdiovides poor estimates of the ground height. Both the dirt
Although that area is actually low grass, since the system Hagund and the person are classified as a mixture of dirt and
no data from the area, ground is a reasonable estimate. obstacle columns. Also without neighborhood information, the
Using the model structure and the known ground heigH€getation class predictions contain many isolated misclassifi-
under the vehicle allows the system to produce reasonapfions due to ambiguous data.
estimates of the ground height even in areas where the grounéigure 11 illustrates the quality of the ground height es-
is hidden. In addition to providing a smoothing prior, neightimates from Figure 10. After computing estimates of the
borhood interactions allow information to propagate. Fixinground height using our model, we drove through the scene
the heights under the wheels affects the ground estimatesdaward the area between the person and the dirt mound,
the surrounding area. Columns with little or no data can stdind made measurements of the ground height using our
produce useful estimates by relying on their neighborhoogtheel locations. This trajectory is marked as “True height” in
The system can infer the common vegetation height of tiiégure 11, and offers a comparison for the estimates produced
tall weeds from areas where the ground is more directby the model and those using the lowest hit or pass-through in



(a) View from the tractor (b) Spatial model output (c) Independent column output

Fig. 12. The tractor (a) is on a steep side slope with dense vegetation at the bottom of the hill. The spatial model (b) infers the ground height beneath the
vegetation which could correctly trigger a roll-over hazard. The independent model (c) incorrectly predicts that the tractor could drive on top of the vegetation.

each column. The model ground estimates are fairly smodtiere would bevegetationstate voxels above the displayed
and stay within approximately 20cm of the true value. transition fromgroundto vegetation

Current approaches that filter out vegetation from the groundThe path that the tractor is driving on has a high side slope,
surface generally rely on the deepest range penetration, dod the ground becomes even steeper on the lower part of
for dense non-penetrable vegetation this performs very poothe hill under the vegetation, which could result in a roll-over
since there are no range points that reach the ground. Thdrazard. The dense vegetation prevents laser measurements of
fore, in addition to comparing our model to the lowest hit oihe ground, so a system that uses the lowest point for the
pass-through, we also compare it to an approach that adjugtund height would treat the top of the vegetation as the
the lowest hit in each column based on the independent colusupporting surface, as shown by the ground height predictions
classifications shown in Figure 10(c). Instead of using spatial Figure 12(c). This would make that part of the hill appear
structure to infer the vegetation height from the data as in owr be fairly flat and traversable, when it actually contains a
model, this approach simply uses the average height of esttep side slope and could represent a roll-over hazard.
class from the training data for the offset. Figure 11 shows thatFigure 12(b) shows the spatial model ground height esti-
this can work well when the classification is correct and th®ates. This approach correctly infers a ground surface below
actual vegetation height matches the training data, but it sufféipe vegetation, and the resulting ground surface predicts a high
from misclassification and the lack of a smoothing prior.  slope in that area that could be used with a vehicle model to

check for roll-over conditions.
C. Vegetation on a Slope The model assumptions of smooth ground and similar vege-
) ) tation height enable the system to infer the ground surface be-

The previous section demonstrated how the model's stryggy the vegetation, even though the system was never trained
tural assumptions enabled improved ground height estimg; the height of the vegetation. As in the simulation example
tions. However, in that example the ground was generally section VIII, the transition from ground to vegetation at
flat so a system that simply classified all vegetation as safg edge of the path allows the system to infer a vegetation
could have succeeded without correctly estimating the groupgight which then propagates through the spatial correlations
surface (although detecting positive obstacles such as {h&ne model to drop the ground surface below the top of the
person would be more difficult without the ground heightyegetation. The system also tries to produce smooth ground
This section shows an example where treating vegetation &agimates between the observed ground height on the path near
drivable could lead to dangerous behavior but finding tge tractor and the data from the bottom of the slope (not
supporting ground surface enables the vehicle to stay safeysjple in the figures). These various constraints combine to

Figure 12 shows the tractor as it is driving along a paifroduce an accurate ground estimate in this difficult example.
on a steep 1l4-degree side slope with dense vegetation at the
bottom of the hill. The vegetation at the bottom covers arld- Ledge Step Hazard
hides the supporting ground surface underneath. Figures 12(bJhe previous sections looked at examples where the model
and 12(c) show a view from in front of the tractor of theassumptions of smooth ground, class continuity, and similar
range point data, as well as estimates of the ground heiglkgetation height were generally correct. This section explores
and the classifications. As in the other result figures, eaalihat happens when model assumptions are incorrect.
column is colored using the class label of that column, andOur main test area did not have any areas with non-smooth
the height of thevegetationcolumns shows the transition fromground so a wooden ledge was constructed. Figure 13 shows
ground to vegetation If instead we showed the states of théhe tractor as it approaches this ledge, and Figure 13(b)
individual voxels, then the portions of the columns visible igives the model ground height estimates. The ledge has an
Figures 12(b) and 12(c) would bground state voxels and appearance that matches the ground class, so there is a row



(a) View from the tractor (b) Spatial model output (c) Spatial model output (side)

Fig. 13. (@) A ledge creating a discontinuity in the ground surface. The ledge violates the smooth ground assumption so the model (b) makes the reasonable
inference that the ledge is an obstacle. (c) The ground height predictions beyond the ledge are lower than the true ground height.

of columns classified as ground, but the ground prior makes
the taller portions of the ledge unlikely to be ground and their
appearance does not match any other class, so the ledge i
reasonably classified as an obstacle.

As shown in Figure 13(b), the ground estimates beyond the
ledge are significantly lower than the true ground height. The
model has explained the higher data points beyond the ledge
with dense medium height vegetation on low ground instead of
short vegetation on higher ground. Figure 13(c) provides some
insight into why the model produces this estimate. The vehicle

Height (m)

| | — True height
—— Model output

is positioned in taller vegetation of similar appearance to the ----Lowest hit or pass

shorter vegetation beyond the ledge. Based on the similarity =2 | ——Lowest hit with class-based offset

in appearance, the system infers that the two patches of 0 5'0. 100 150 300
vegetation belong to the same vegetation class. Consequently Distance along the path (m)

the assumption of common vegetation height propagates the 14 Ground esi o for | b throudh varied

. . . . . . round estimate comparison fTor longer test pat tl rougn varie
h8|ght of the taller vegeta'qon surr_oundlng the vehicle to tv etation, showing predictions made 6m in front of the vehicle as the vehicle
area beyond the ledge. This combines with the smooth groufiéle (note the two axes have very different scales)

prior to underestimate the ground height beyond the ledge.

E. Longer run through varied vegetation when the sensor data is ambiguous. Except for the class neigh-

Figure 14 shows ground height estimates for a longer test QQ(hOOd priorh which caln tr:e ed?ff?'y Itunedkbyfhanq,ha!l mogel
through varied vegetation. Unlike Figure 11, which presen'Pé’J‘rameterS t atdcontro the a 'fUt task o w_elg”tlnlg t ed
a snapshot of the predictions at different distances in front 8ff€rent sensor data appropriately are automatically learne
the vehicle at a given time, Figure 14 shows predictions atbé{ the system by simply driving through representative terrain.

constant 6 meters in front of the vehicle as the vehicle movggr approach can find obstacles without needing to explicitly

forward. The lowest hit line shows that the first 70m of the pafﬂOdeI them or collect obstacle appearance training data.

contained two sections of tall dense non-penetrable vegetation¥Ve have applied this approach in realistic test conditions
and the remainder of the path consisted of low vegetation wi@fd have shown that the use of spatial structure in our model
various tall sparse vegetation and a few small patches of deH8@roves ground height estimation and obstacle classification
vegetation (e.g. 170m). The model output is generally smodiMer an equivalent model that ignores spatial structure. Al-
and closely matches the true height, whereas the lowest thgugh computationally intensive, the algorithm can run in
rarely reaches the ground, and the estimate using lowest '§@l time for moderate vehicle speeds of 1-2m/s.
with class offset is often correct but very noisy because of In areas where our model assumptions are generally true,
misclassifications due to its independence assumption.  the model structure allows the system to infer the supporting
ground surface even when the ground is hidden by dense veg-
X. CONCLUSION etation. Joint inference of class, ground height, and vegetation
Our probabilistic terrain model provides a natural wafpeight allows the system to produce better estimates of each,
of combining different types of sensor data with reasorgince knowing the ground height helps disambiguate obstacles
able assumptions about the world—particularly in agriculturfiom the ground, and knowing the class and vegetation height
applications—such as ground smoothness, class continuft§/ps determine the ground height.
and similarity in vegetation height. These assumptions arewWhen model assumptions are violated, the model often
incorporated as a model prior and help constrain the problgmoduces a desirable result, such as treating a ground discon-



tinuity as an obstacle, even though the resulting ground heigt#] S. z. Li, Markov Random Field Modeling in Image Analysénd ed.,

estimates are inaccurate. This model could also be exten
to include additional class models for overhanging obstacl

S

and holes in the hope of broadening the set of environments

where our assumptions are valid.

(20]

Although we can generally perform inference in the model
in real time for moderate vehicle speeds, the algorithm
presented is still computationally demanding. Perhaps othé¥
approximate inference schemes would be less computationally
intensive than Gibbs sampling, while still offering the benefitg2]
of including the spatial constraints presented in this model.
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